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Abstract—Environmental fate modeling results are often used in risk assessment without adequately considering uncertainty in
exposure predictions. Sensitivity analysis is fundamental to model validation and error prediction since sensitive model input
parameters account for the largest variance in model prediction. Once identified, sensitive model input parameters can be used to
propagate parametric uncertainty in numerical predictions. Output sensitivity to variation in input code sequences was investigated
for the pesticide root zone model (PRZM 3) using Plackett–Burman analysis for six runoff and leaching data sets. The analysis
utilized an incomplete block factorial design with even parameter weighting and uniform proportional input perturbation. Timing
and duration of key period rainfall were assumed a priori to be dominant sensitive inputs. Thus, meteorological data were fixed,
allowing identification of additional input components contributing to model sensitivity. Results validated expert modeler assumptions
concerning parameters most critical for model validation. For leaching data sets, the application rate, soil bulk density (an indicator
of available water-holding capacity), chemical partition coefficient, and pesticide degradation rates were commonly the most sensitive
inputs. For runoff data sets, the in-crop runoff curve number was the most significant input governing pesticide loss in runoff and
erosion flux. The chemical partition coefficient, soil and foliar decay rates, and soil bulk density were also common sensitive
components for runoff predictions. These commonly observed sensitive components for runoff and leaching prediction need to be
carefully considered in the design and conduct of relevant field studies, modeling assessment of such studies, and future improvements
in algorithms for environmental transport modeling.
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INTRODUCTION

The Federal Insecticide, Fungicide, and Rodenticide Act
(FIFRA) Environmental Model Validation Task Force
(FEMVTF), a collaborative effort of scientists from the crop
protection industry and the U.S. Environmental Protection
Agency, was established to improve confidence in regulatory
modeling [1]. The work of this task force has compared the
results of PRZM 3 predictions with measured data collected
in 18 different leaching and runoff field studies [2,3].

One of the goals of FEMVTF is to provide uncertainty
bounds for numerical modeling based on comparison of model
predictions with data sets for field dissipation, prospective
groundwater, and runoff studies. Validation within this context
provides a measure of how well current environmental fate
models can predict real-world behavior. An integral part of
these tasks is determining the quality of data sets that span a
wide range of philosophy for design and conduct of field re-
search. Model sensitivity analysis can be instrumental in de-
ducing the quality of the various data sets by indicating those
input parameters needed for accurate model predictions. Such
information aids in interpretation of modeling results and may
be a necessary precursor to any subsequent statistical com-
parison of model-predicted results to field observations [4].
Sensitivity analysis can also prove useful for future field study
design by identifying those parameters requiring the greatest
accuracy in measurement.

* To whom correspondence should be addressed
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Input data sensitivity for transport modeling

Multiparametric transport models may be sufficiently non-
linear in their output response surface to confound simple
procedures for validation. Sensitivity to input parameter var-
iance can be used to identify important input parameters and,
additionally, allows for evaluation of model efficacy (ability
to produce a desired effect [5]). Sensitivity analysis should be
conducted across the full range of likely parameter values [6]
and for other input assumptions that are not parameters per se
(e.g., selection of soil layer thickness for a leaching model
[7]).

The intuitive sense developed by transport modelers for
sensitive input parameters is restricted to the universe of data
sets modelers may have evaluated. Statistical approaches to
sensitivity analysis can be used to validate modeler intuition
and to extend knowledge of model robustness and efficacy
across a wider range of input data sets. Unfortunately, limited
documentation of input data sensitivity (either intuitive or sta-
tistical) exists for most transport models.

Empirical description of transport model sensitivity

Walker et al. [8] reported the effect of single-parameter
variance on output (total pesticide residues with time, residue
distribution with depth, and fraction leached) for a standard
set of input data for PRZM 2 (as well as LEACHP [9] and
VARLEACH [10]). Pesticide degradation half-life in soil and
the equilibrium soil–water partition coefficient (Kd) signifi-
cantly influenced total soil residues and fraction of residues
leached, respectively. A 1.5-fold increase in half-life (133–200
d) resulted in a 43% increase in total soil residues. Variance
in Kd from 1.7 to 8 resulted in about 10% greater soil residues.
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When a Freundlich coefficient (Kf) and 1/n were used instead
of Kd for describing the soil–water partition, variance in the
Freundlich 1/n was not judged to be particularly sensitive but
was more important for a lower associated Kf value. The effect
of variance in either half-life or Kf on output was nonlinear.

In this study, soil parameters were varied under fixed inputs
for weather and chemical properties [8]. Decreased bulk den-
sity (1.5–1.0) resulted in 30% greater mean leaching depth.
Initial soil moisture content and field capacity were insensitive
soil parameters. In contrast, Monte Carlo analyses with PRZM
showed field capacity to be the most sensitive parameter for
prediction of leaching for a short-lived (half-life of 30–60 d),
weakly sorbed (Koc 5 20–40 L/kg) pesticide [11,12].

Finally, the sensitivity of PRZM 2 to the treatment of dis-
persion was an important modeling consideration [6]. PRZM
2 proved particularly sensitive to thickness of layer segments,
especially in the surface few centimeters, as this influenced
the effect of numerical dispersion. This can be minimized by
careful initial evaluation of the effect of segment thickness or
through use of an analytical dispersion value if appropriate
site hydrological information is available. Although results are
not reported for PRZM 2, with LEACHP set to a 3-cm layer
thickness, a change in numerical dispersion from 0 to 20 mm
caused an approximate 10% decrease in peak pesticide con-
centration without an increase in leaching loss. A further in-
crease to 50 mm resulted in significantly increased leaching
loss and a flatter pattern of pesticide residue concentration in
the soil profile. Dispersion assumptions have additionally been
cited as a critical aspect of PRZM model performance by
Carsel et al. [11,12] and have been addressed in PRZM 2 and
PRZM 3 with the inclusion of the method of characteristics
option that solves the chemical transport equation with min-
imization of numerical dispersion [13].

Leonard and Knisel [14] observed that for groundwater
loading effects of agricultural management systems (GLEAMS
[15]) leaching predictions, much of the variance in model out-
comes for probabilistic modeling with 50 years’ weather was
attributable to rainfall distribution relative to timing of pes-
ticide application. A given large rainfall event on the day of
application is sufficient to initiate leaching even for a short-
lived molecule. Worst-case rainfall scenarios were suggested
as a means to reduce variances. When Koc (Kd/soil organic
fraction) varied from 100 to 10 L/kg for a pesticide with a 60-
d half-life, the predicted 50th-percentile leaching losses were
increased by about threefold on a sandy clay loam soil (pes-
ticide leached increased from 5–15%). A similar sensitivity
analysis on a sand-textured soil showed the same relative mag-
nitude of effect, but the absolute amount leached was consid-
erably more significant (pesticide leached increased from 12–
35%). Leonard et al. [16] presented similar conclusions re-
garding annual runoff losses for pesticides as predicted by
GLEAMS (rainfall, especially in a short postapplication in-
terval, has an overriding importance on runoff predictions).
These authors simulated moderately to strongly sorbed pes-
ticides (Koc of 100–1,000) with short soil half-lives (15 d) and
also stressed that as half-life increased, sensitivities to inputs
such as rainfall might decrease and/or variables related to sed-
iment transport might increase in importance.

Truman and Leonard [17] investigated GLEAMS predic-
tions of pesticide leaching losses as influenced by environ-
mental fate parameters (surface and subsurface half-lives as
well as Koc) for two soil scenarios subjected to the same 50-
year pattern of rainfall. As would be expected, increased sur-

face and subsurface half-lives (5–30 and 2.5–360 d, respec-
tively) and decreased Koc (10–100 L/kg) increased the amount
of predicted leaching loss. Rainfall timing immediately after
application was especially important when pesticide half-lives
were short. For selected scenarios, potential leaching losses
from the root zone increased two- to sevenfold as subsurface
half-life increased sixfold.

Sensitivity analysis for pesticide runoff and sediment trans-
port for the chemicals, runoff and erosion from agricultural
management systems (CREAMS) model was performed for
weakly and strongly sorbed pesticides by Lane and Ferreira
[18]. Rainfall was highly significant for a weakly sorbed mol-
ecule but not for a strongly sorbed molecule. Application rate
and runoff yield, as well as application and incorporation ef-
ficiency, was always significant.

Documentation for GLEAMS similarly indicates sensitive
input parameters [19]. Runoff curve numbers are particularly
sensitive parameters that increase in sensitivity as values of
the curve number increase. The runoff curve number for the
soil while in crop is especially sensitive in this regard. Porosity
and field capacity are additional sensitive parameters govern-
ing water flow (leaching vs runoff). When overland flow is
segmented to reflect complex slopes, the soil loss ratio (C-
factor in the universal soil loss equation) becomes a sensitive
parameter. The Koc is the most sensitive pesticide input pa-
rameter. For Koc less than 500, surface runoff decreases as Koc

decreases because of mobilization below the 0- to 1-cm surface
layer. For Koc greater than 1,000, increased Koc shifts pesticide
loss from runoff to sediment transport. Soil half-life is sensitive
as well. Application rate may be sensitive depending on the
effect of soil half-life and foliar interception to reduce the
amount of pesticide available for transport.

Zacharias and Heatwole [20] used comparisons of bromide
and pesticide leaching from uncalibrated and calibrated runs
of PRZM and GLEAMS to gain insight as to sensitive com-
ponents of these transport models. Curve number, field ca-
pacity, and wilt point were considered sensitive parameters for
both models, as were leaf area index for GLEAMS and depth
of soil water extraction for PRZM. Ma et al. [21,22] concluded
that GLEAMS, PRZM 2, and PRZM 3 were all highly sensitive
to runoff curve number, soil water contents at field capacity,
and wilt point in their evaluation of surface water and atrazine
runoff. Additionally, the effective mixing depth for chemical
transfer to surface runoff and the kinetic sorption rate coef-
ficient were found to be highly sensitive components for PRZM
3 atrazine runoff prediction [22].

Statistical description of transport model sensitivity

Fontaine et al. [23] statistically evaluated the effect of input
parameter variance for prediction of leaching depth at a fixed
total residue concentration when modeled by PRZM within a
Monte Carlo shell. Sensitivity analysis was performed for 35
PRZM input parameters when simultaneously varied over a
range appropriate for preemergence soybean herbicide use in
the midwestern United States. The results were evaluated by
both Plackett–Burman (PB) [24] and Fourier amplitude (FAST
[25]) sensitivity analysis. Both statistical tools produced com-
parable relative sensitivity rankings. The PB analysis proved
preferable to FAST because of the much-reduced computa-
tional intensity of this approach. (PB utilizes a partial factorial
design, whereas FAST generates a sequence of scenarios by
oscillating inputs at different frequencies between lower and
upper bounds.)
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The most critical input parameter in the work of Fontaine
et al. [23] was key period rainfall, which refers to the postap-
plication timing of a rainfall event sufficient to initiate leaching
and indicates the overriding importance of rainfall/irrigation
distribution as a critical PRZM input. Other parameters that
were sensitive in most ranges were pesticide half-life, detection
limit, Koc, soil organic carbon, and available water in the sur-
face horizon. Variables that were important for many ranges
included runoff curve numbers 3 and 2, the bulk density in
the surface horizon, and the total pesticide applied. In some
cases the bulk density and available water content in the second
horizon were also important. The PRZM 3 will not be markedly
different from PRZM in the relative importance of these key
input parameters as long as the aforementioned sensitivity to
surface layer thickness/dispersion is addressed.

Cryer et. al. [26] have utilized PB designs to evaluate sen-
sitive parameters affecting pesticide runoff predictions from
GLEAMS and the erosion-productivity impact calculator, wa-
ter quality (EPICWQ) model as well as leaching predictions
from PRZM 2. Analysis of 20 input parameters for EPICWQ
used a fixed single year of weather (weather was assumed a
priori to be the most significant input class) with a significant
effect judged any variance significant at p , 0.01 to 0.02. For
chlorpyrifos application to corn in the Midwest (USA), sen-
sitive parameters (ranked) were runoff curve number after
planting, timing of the third application date, timing of the
second application date, and the planting date. Similar sen-
sitivity analysis for GLEAMS indicated the sensitive inputs
(ranked) were the runoff curve number, pesticide water sol-
ubility, and pesticide soil half-life. (The variance ranges for
the analyses were 70–95 for the Soil Conservation Service
curve number, water solubility of 1–6 mg/L, and soil half-life
of 4–70 d; output variables considered were daily maximum
and annual fractional runoff and leaching of pesticide, daily
maximum and annual water flow rates, and erosion mass.) The
experience of these modelers is that for fixed pesticide prop-
erties, ranked sensitivity for runoff inputs is

weather k runoff curve number k all other inputs

and for leaching, the dominant sensitive parameters are po-
rosity, field capacity, and hydraulic conductivity (S. Cryer,
Dow AgroSciences, personal communication).

Cryer and Havens [27] have performed global sensitivity
analysis for GLEAMS using Plackett–Burman techniques.
Characteristic runoff and leaching results for seven geograph-
ically diverse scenarios were investigated for both a hydro-
philic and a hydrophobic pesticide. Weather patterns charac-
teristic of 50th-, 90th-, and 99th-percentile return frequencies
for each region were used. It was found that geographic con-
ditions such as weather, soil crop and management practices,
and the physicochemical pesticide properties define both the
number and the sensitivity ranking for GLEAMS-sensitive in-
put parameters. Several water hydrology parameters were con-
sistently found as sensitive. These include runoff curve num-
ber, soil porosity, and the soil evaporation parameter. Important
pesticide properties were Koc and half-life. The sensitivities of
the GLEAMS inputs were largely dependent on the nominal
values initially chosen and the geographic region simulated.

METHODOLOGY FOR CONDUCTING SENSITIVITY
ANALYSIS

Plackett–Burman fractional factorial design [24] was cho-
sen as the procedure for conducting FEMVTF sensitivity anal-

yses because of its simplicity and suitability for the identifi-
cation and ranking of variance components in multiparametric
models. The PB analysis isolates variable main effects through
a contrast of outcomes at two different levels. This is accom-
plished by investigating equal numbers of combinations of
each variable at predetermined high and low levels that in this
exercise are dictated by the selection of a perturbation factor.
The average difference in outcomes over the various combi-
nations of variable input parameters allows for determining
the effect for each input parameter. The average effect is de-
scribed as

n/2 n/22 2
E 5 x 2 x 5 Y 2 Y (1)O Oi h l (11) (21)n nj51 j51

where

E 5 average effect on model output for parameter “i”i

n 5 number of model simulations

x 5 effect at a high level of the parameterh

n/22
given by YO (11)n j51

x 5 effect to be contrasted at a low levell

n/22
of the parameter given by YO (21)n j51

Y 5 model output result when input parameter(11)

“I” was high (11)

Y 5 model output result when input(21)

parameter “I” was low (21)

The PB design uses an incomplete block factorial design
where each input parameter is evenly weighted. This reduces
the number of unique model simulations required at the ex-
pense of assuming that interactions between more than two
variables are insignificant, as this variance is grouped with the
model error. Plackett and Burman [24] present designs for
contrasts at two levels.

Inclusion of a subset of dummy variables is used to char-
acterize the variance (V) and standard error (s). These dummy
variables have no physical significance, and thus any effect
on model output resulting from changes is purely random. The
average difference in the sum of high and low inputs for the
test and dummy parameters is determined. The standard error
variance of an effect is the variance due to dummy variables
(EDi, where i 5 1,n with n being the total number of dummy
variables; typically, n 5 5 degrees of freedom for the PB
program):

n
2(E )O Di

i51V 5 (2)
n

The standard deviation of the effect is thus

1/2s 5 V (3)

A simple t test allows for testing of the significance of the
effects found for the mean difference between two real vari-
ables (x):
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t 5 (x 2 x )/sh l x (4)

where

s
s 5 (5)x Ïn

The result of PB analysis is, therefore, a ranked listing of
variables in order of their relative effect on model outcomes,
along with a determination of relative significance of the effect.
The PB analysis has been used to evaluate input parameter
sensitivity for transport modeling of pesticides at the regional
scale [23,26,27].

Soil correlations to eliminate potential nonsense parameter
combinations

In addition to the experimental design considerations, sev-
eral physically based correlations for soil properties are em-
ployed to avoid possible nonsense parameter combinations that
can be obtained from the PB analysis. The following simple
equality must be obeyed for all soils:

wilting point # field capacity

# porosity (6)

If wilting point (WP), field capacity (FC), and porosity
(POR) are treated as independent parameters with certain mag-
nitudes, then the PB design could result in violation of Equa-
tion 6 since inputs are perturbed around a nominal value. This
typically causes a soil transport model to generate erroneous
results or not run at all. The following soil correlations are
implemented for both the GLEAMS and the PRZM model to
avoid potential nonsense soil parameter combinations [28]:

FC(i) 5 0.3486 2 0.0018sand(i) 1 0.0039clay(i)

1 0.0228OM(i) 2 0.0738BD(i) (7)

WP(i) 5 0.0854 2 0.0004sand(i) 1 0.0044clay(i)

1 0.0122OM(i) 2 0.0182BD(i) (8)

BD(i) 5 2.65[1 2 POR(i)] (9)

The array subscripts (i) in Equations 2 and 3 represent
layers i, from i 5 1 to n, where n 5 total number of soil layers
that are being modeled.

In these correlations, both WP and FC are treated as de-
pendent variables and are functions of soil texture (%clay and
%sand), bulk density (BD), and soil organic matter (OM).
Thus, %sand, %clay, OM, and BD can be investigated in the
sensitivity analysis. The inputs FC and WP are calculated from
these independent variables. Certain parameter combinations
substituted into Equations 7 through 9 may not satisfy Equation
1. In cases where WP . FC, WP is set equal to FC minus a
small amount. In cases where FC . POR, FC is set to a value
slightly less than POR. This guarantees that Equation 6 will
always be true for all independent variable combinations re-
gardless of whether the parameter combinations were real or
imaginary.

Soil properties that vary with depth

Several soil properties can vary with depth throughout the
soil horizon. Examples include porosity/bulk density, field ca-
pacity, wilting point, organic matter, and pH. The user specifies
as input the soil depth increments where property values differ,
along with the magnitudes of the properties at each specified
depth. The number of PB simulations required if all soil in-

tervals were modeled as being independent would dramatically
increase if each soil layer were treated as a separate entity.
Therefore, parameters that can change with depth are grouped
together and changed according to the original user-defined
magnitude (via the nominal file) at each depth. For example,
if soil organic matter is chosen as an input parameter to in-
vestigate, the PB program changes all soil organic matter by
the same perturbation factor specified by the user. If the user
specifies a 10% perturbation around the nominal value and the
PB design specifies a 21, then all the soil organic matter values
for each soil layer and for this simulation are decreased by
approximately 10%. Thus, the same value for organic matter
is not simulated for all soil depth intervals (unless the user
specifies that the organic matter does not vary with depth in
the nominal file), but rather a consistent and constant per-
centage change occurs for each depth value.

Implementation of sensitivity analysis within FEMVTF

Plackett–Burman sensitivity analysis has been an integral
part of numerical modeling risk assessment within the Dow
AgroSciences GRASP and DEGAS systems where it has been
used to discern sensitive inputs to chemical transport models
[23,26,27]. The sensitivity analysis in DEGAS has been au-
tomated and consists of FORTRAN and UNIX shell scripts.
The system is robust and usable and fits well with the goals
of FEMVTF; therefore, the original code for PB analysis has
been repartitioned and altered by FEMVTF to be hosted in a
DOS-based environment. These executables have been linked
such that they run in the DOS window on Windows 3.1, 1995,
or NT as well as from the standard DOS prompt. The sensi-
tivity analysis program has three components: (1) a FORTRAN
program for the sensitivity analysis using a PB design that
generates model input files, (2) a shell script (batch file) that
executes the PRZM 3 model, and (3) a routine for summari-
zation of statistical results for input and output parameters
investigated.

Interim releases of the PB software (PB 1.0b, PB 1.0, and
PB 1.01) compatible with interim releases of PRZM 3 were
used for sensitivity analysis of two leaching and two runoff
data sets in the FEMVTF Phase II pilot exercise. Two addi-
tional data sets (one runoff and one leaching) were analyzed
using PB 1.2b3, a version coded for compatibility with the
beta release of PRZM 3 (Ver 3.12 beta; http://www.epa.gov/
ceampubl/softwdos.htm).

This PB numerical tool additionally supports GLEAMS
simulations. This aspect of PB is well documented [23] and,
therefore, was not considered within FEMVTF.

The FEMVT evaluations

Sensitivity analyses were conducted with three leaching and
three runoff data input sets. Each data set represents physical
properties from large-scale field studies involving commercial
pesticides. The main features of these data sets are summarized
in Tables 1 and 2 and are comprehensively described by Singh
and Jones [2] and Russell and Jones [3]. The approach for
conduct of the sensitivity analysis within the FEMVTF project
is described here.

The PRZM 3 input data sets [2,3] were subjected to indi-
vidual sensitivity analyses conducted for each model output
parameter of interest. For runoff data sets, total runoff flux
(mg/ha/year) and total erosion flux (mg/ha/year) were the out-
put quantities evaluated. For leaching data sets, the maximum
total pesticide in compartment X (mg/kg, where X is the layer
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Table 1. The main features of the leaching data sets analyzed by the Plackett–Burman technique

Data
set

Soil
association Soil type

Hydrologic
group Crop

Application
rate

(kg a.i./ha)
Half-life

(d)
Kd

(ml/g)

NC1L
NC2L
NC3L

Kenansville
Tarboro
Tarboro

Loamy sand
Loamy sand
Loamy sand

A
A
A

Soybean
Soybean
Cotton

0.56
0.14
0.14

100
47
14

0.361
0.425
0.091

a NC 5 North Carolina, USA.

Table 2. The main features of the runoff data sets analyzed by the Plackett–Burman technique

Data set
Area
(ha)

Slope
(%) Soil type Crop

Application
methoda

Half-life
(d)

Kd

(ml/g)

GA1Rb 3.64 3.5 Loamy sand Cotton Aerial (L) 6 4
GA2R 3.04 3–5.5 Sandy loam Sweet corn Foliar (L) 8 0.43
IA2c 7.0 4.3 Silt loam Corn T-band, foliar, and

broadcast (G, L)
30 121

a Formulation type given in parentheses (G 5 granular, L 5 liquid).
b GA 5 Georgia, USA.
c IA 5 Iowa, USA.

of interest and may represent the lowest computational layer
at which a detect occurs or the computational layer where the
pesticide center of mass occurs), maximum pesticide dissolved
in compartment X (mg/L), and total dispersion flux at soil core
depth (mg/ha/year) were the output quantities monitored.

General rules for preparing the source data (a PRZM 3 input
file) for analysis were followed. First, identification of those
inputs that, when adjusted by the perturbation factor (PF),
would exceed acceptable input limits for PRZM was sought.
These inputs were adjusted such that perturbed bounding limits
were not exceeded (preferred approach) or alternatively were
eliminated from consideration (not perturbed). The source me-
teorological file was truncated to include only one year of data,
under the a priori assumption that meteorology is the dominant
contributor to modeling sensitivity. The output data file created
by PB was monitored to determine if PB-generated PRZM
runs are properly executing. In particular, if total dispersion
flux showed that fluxes were well below the method sensitivity
for the pesticide considered, the soil core depth was adjusted
upward through modification of the source input file (selection
of a soil core depth within the described root zone at less than
100 cm was preferred).

Two analyses, denoted as quasi global and constrained,
were conducted for each data set–model combination. A quasi-
global analysis considered all input parameters implemented
within the PB program for a given model (a maximum of 64
possible inputs for PRZM). This portion of the sensitivity anal-
ysis served as a check on data set quality used as the basis
for data set inclusion into the FEMVTF exercise. Sequential
runs were performed where the PF was lowered from an initial
value of 0.10 (10% perturbation of inputs) in steps of 0.02 to
the point where the range in output probability of a greater ztz
ranged from zero (0.0000) to approximately 1 for the output
correlation of interest. This represented the optimized PF. Next,
constrained analysis excluded those parameters identified as
not sensitive (p ztz $ 0.05) from the quasi-global analysis at
the optimized PF and the PB routine was rerun at the optimized
PF for this reduced set of inputs. Relative sensitivities for a
given PB model run were calculated as E/Emax, where E is the
effect for an input parameter and Emax is the maximum effect

observed for the parameters input into the PB run. Results of
the quasi-global analysis were plotted as E/Emax versus param-
eter number. Results of the constrained analysis, expressed as
zE/Emaxz as a percentage, were used to describe the relative
importance of significant model inputs on output sensitivity.

RESULTS OF LEACHING ASSESSMENTS

Data set NC1L

Quasi-global analysis. A total of 33 PRZM 3 input param-
eters for the NC1L data set were initially varied to optimize
the PF for ranking of input parameter sensitivity by quasi-
global analysis. The output parameters monitored were the
maximum total and dissolved pesticide residue observed in
compartment 139 (;1 m depth in the soil profile). Figure 1
compares the relative sensitivity (E/Emax) when an initial quasi-
global analysis was conducted with a PF of 10 and 8% for
total and dissolved pesticide, respectively. Both results show
similar parameters as the most sensitive inputs: chemical ap-
plication rate (TAPP), BD indicative of available water-hold-
ing capacity, the adsorbed phase decay rate (DSRATE), the
maximum rooting depth of the crop (AMXDR), and the chem-
ical partition coefficient (KD). Parameter nomenclature refers
to the input parameter selected for perturbation and is fully
described in Havens et al. [29].

Constrained analysis. The quasi-global analysis identified
sensitive inputs for further analysis. The outputs monitored by
constrained analysis (optimized PF of 8%) were maximum
total pesticide concentration at 1 m depth and maximum dis-
solved pesticide concentration at 1 m depth. Twenty-seven
input parameters were shown to have statistically significant
(p , 0.05) effects on leaching predictions. Six of these pa-
rameters were shown to account for .80% of the relative
model sensitivity (zE/Emaxz). Results (Table 3) show the same
six parameters as having the greatest sensitivity for predictions
of maximum total and dissolved pesticide occurring at the
bottom of the nominal root zone. These parameters include
total applied mass, bulk density (an indicator of available wa-
ter-holding capacity in PB), adsorbed phase decay rate, max-
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Fig. 1. Influence of the perturbation factor (PF) on E/Emax for sensi-
tivity of predictions of maximum total pesticide at a 1-m depth in the
soil profile as influenced by the pesticide root zone model (PRZM)
3 input parameters, data set NC1L (NC, USA).

Fig. 2. Calculated E/Emax for sensitivity of predictions of maximum
total pesticide at a 1-m depth in the soil profile as influenced by the
pesticide root zone model (PRZM) 3 input parameters, data set NC2L
(NC, USA).

Table 3. Results of Plackett–Berman analyses for leaching expressed as relative importance of sensitive components (where relative sensitivities
do not sum to 100, additional parameters were significant but minor contributors to the overall model sensitivities observed)

Parameter Parameter description

NC1La

Total Dissolved

NC2L

Total Dissolved Flux

NC3L

Total Dissolved Flux

BD
TAPP
AMXDR

Bulk density
Chemical application rate
Maximum rooting depth

22
26

7

16
23

6

51

3

77

1

15

6

20
20

8

14
19

8

13
12
16

DSRATE1
DSRATE2
DSRATE3

Adsorbed phase chemical
decay rate (layer 1, 2, 3)

20 16 34 7
4

7
4

6
11

2
KD1
KD2

Chemical partition coefficient
(layer 1, 2)

4 17 4 60 5
3

5
9 6

CN1
CN2

Runoff curve number
antecedent moisture
condition 2 (cropping stage
1, 2)

3 2 4
5

2
4

5
10

4

PF Pan factor 2 4 2 4 3 8

a NC 5 North Carolina, USA.

imum rooting depth of the crop, pesticide Kd, and runoff curve
number 2.

Data set NC2L

Quasi-global analysis. A total of 30 PRZM 3 input param-
eters for the NC2L data set were initially varied for quasi-
global analysis to optimize the PF for the ranking of input
parameter sensitivity. The output parameter monitored was the
maximum total pesticide residue observed in compartment 150
(1 m depth in the soil profile). Figure 2 compares the relative
sensitivity (E/Emax) when an initial quasi-global analysis was
conducted with a PF of 10%. Subsequent runs were conducted
at smaller PF.

Constrained analysis. The normalized results from the qua-
si-global runs identified 22 sensitive inputs for further analysis,
and an optimized PF of 1% was selected. For constrained
analysis, three outputs were monitored that include the max-
imum total pesticide concentration at 1 m depth, maximum
dissolved pesticide concentration at 1 m depth, and total dis-
persive flux of pesticide at the soil core depth (2 m). Ten (11
in the case of dispersive flux) of the 22 input parameters were
shown to have statistically significant effects on leaching pre-

dictions. The results (Table 3) show very similar rankings in
the relative importance of significant parameters. Soil bulk
density (BD, an indicator of available water-holding capacity
in PB) and the KD were shown to be approximately twofold
more sensitive than the next group of sensitive inputs. These
findings confirmed the opinion of expert modelers as shown
in calibrated model runs where stepwise changes in selection
of available water-holding capacity and Kd were used to op-
timize the fit of modeled results to field observations.

Data set NC3L

Quasi-global analysis. A total of 39 PRZM 3 input param-
eters for the NC3L data set were initially varied for quasi-
global analysis in order to optimize the PF for the ranking of
input parameter sensitivity. The output parameters monitored
were the maximum total and dissolved pesticide residue at the
20-cm core depth as well as total dispersive flux at the 90-cm
core depth. Comparison of the relative sensitivity (E/Emax)
when an initial quasi-global analysis was conducted with an
optimized PF of 10% (Fig. 3) shows similar parameters as the
most sensitive inputs—TAPP, BD indicative of available wa-
ter-holding capacity, the DSRATE1 and DSRATE2, the
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Fig. 3. Comparison of E/Emax for sensitivity of predictions of maximum
total pesticide in the 20-cm soil depth increment, maximum dissolved
pesticide in the 20-cm soil depth increment, and total dispersive flux
at a 90-cm depth in the soil profile as influenced by the pesticide root
zone model (PRZM) 3 input parameters, data set NC3L (NC, USA).

Table 4. Results of Plackett–Berman analyses for runoff expressed as relative importance of sensitive components (where relative sensitivities
do not sum to 100, additional parameters were significant but minor contributors to the overall model sensitivities observed)

Parameter Parameter description

GA1Ra (foliar)

Runoff Erosion

IA2b (foliar)

Runoff Erosion

IA2R (soil)

Runoff Erosion

GA2R (foliar)

Runoff Erosion

CN1
CN2

ROc curve number 1
RO curve number 2 85 71 73 30 37 63

25
32

26
21

KD1 Kd (layer 1) 8 5 23 23 14 6
DSRATE1 Adsorbed phase chemical

decay rate (layer 1)
9 4 18 6 15

PLDKRT
BD
MNGN
UPTKF

Decay rate on foliage
Bulk density
Manning’s N
Plant uptake factor

6
7

5
5

4
12
14

8
7

22

3

17

6

4 4

4

a GA 5 Georgia, USA.
b IA 5 Iowa, USA.
c RO 5 runoff.

AMXDR, the PF, and the KD1 and KD2. (Two parameters
each are associated with decay rates and chemical partition
coefficients to reflect properties for two different soil hori-
zons.)

Constrained analysis. The quasi-global analysis identified
sensitive inputs for further analysis. The outputs monitored by
constrained analysis (optimized PF of 10%) were maximum
total pesticide concentration and maximum dissolved pesticide
concentration at a 20-cm depth and total pesticide flux at a
90-cm depth. Up to 37 input parameters had statistically sig-
nificant (p , 0.5) effects on leaching predictions. Six of these
parameters were shown to account for .80% of the relative
model sensitivity (zE/Emaxz). Results (Table 3) show the same
six parameters as having the greatest sensitivity for predictions
of maximum total and dissolved pesticide occurring at the
bottom of the nominal root zone: chemical application rate,
bulk density (an indicator of available water holding capacity
in PB), adsorbed phase decay rate, maximum rooting depth of
the crop, chemical partition coefficient, and in-crop runoff
curve number.

RESULTS OF RUNOFF ASSESSMENTS

Data set GA1R

GA1R—Foliar applications only. Quasi-global analysis of
data set GA1R resulted in selection of an optimized PF of
0.1% for constrained analysis of GA1R. Predictions of erosion
flux were sensitive to a greater number of input parameters
than were predictions of runoff flux. Curve number 2 (in crop,
CN2) was clearly the most sensitive input parameter account-
ing for .70% of output variance from significant inputs in
output of both runoff and erosion flux (Table 4). This was
confirmed with calibrated modeling where in-crop changes in
the runoff curve number were shown to have occurred; PRZM
cannot use multiple in-crop runoff curve numbers and there-
fore is limited in its ability to capture both early and late runoff
events for the GA1R data set.

Data set IA2R

Data set IA2R involved both foliar and soil applications
within the same season of use. These cases were treated in-
dividually in separate PB analyses. Quasi-global analysis re-
sulted in selection of an optimized PF of 0.1% for constrained
analysis of both foliar and soil applications for IA2R.

IA2R—Foliar applications only. The in-crop runoff curve
number (CN2) was the most sensitive input parameter affecting
output of both runoff and erosion flux (Table 4). Both KD and
BD were important secondary inputs for erosion flux (Table
4).

IA2R—Soil applications only. The CN2 was the most sen-
sitive input parameter affecting runoff and flux predictions.
Both BD and KD were important secondary inputs. The KD
was the most sensitive parameter affecting pesticide loss in
erosion flux (Table 4).

Data set GA2R

Quasi-global analysis of data set GA2R resulted in selection
of an optimized PF of 8% for constrained analysis of GA2R.
Runoff curve numbers 1 and 2 (fallow and in crop) accounted
for about 50% of the model sensitivity to model input param-
eters.

SUMMARY AND CONCLUSIONS

Evaluation of six data sets using Plackett–Burman sensi-
tivity analysis and FEMVTF guidance documentation allowed
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for quantitative evaluation of sensitive input parameters for
leaching and runoff predictions using PRZM 3. The quanti-
tative results of PB analysis validated expert modeler as-
sumptions concerning those parameters most critical for model
validation. Results for leaching data sets (Table 3) show that
chemical application rate, soil bulk density (an indicator of
available water-holding capacity), the chemical soil partition
coefficient, and chemical degradation rates were commonly
the most sensitive inputs. For runoff data sets (Table 4), the
in-crop runoff curve number was the most significant input
governing runoff and erosion flux. The chemical partition co-
efficient, soil and foliar decay rates, and soil bulk density were
also commonly shown to be sensitive components for runoff
predictions. These commonly observed sensitive components
for runoff and leaching prediction need to be carefully con-
sidered in the design and conduct of relevant field studies,
modeling assessment of such studies, and future improvements
in algorithms for environmental transport modeling. In addi-
tion, parametric uncertainty in these sensitive input parameters
should be propagated through error bounds on model output
predictions.
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