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Abstract—Computer models are being increasingly used to provide an efficient cost-effective means of evaluating the fate and
behavior of chemicals in the environment. These models can be used in lieu of or in conjunction with field studies. Because of
the increasing reliance on models for critical regulatory decision making, the need arose to assess the validity of regulatory models
via an analysis of the correlation of model response estimates with measured data. In conjunction with the evaluation of the
correlation of model response estimates and measured field data, a rigorous statistically based validation was also warranted. Because
of the unique nature of the correlative exercise using modeled and measured data, standard statistical analyses, while informative,
failed to encompass factors associated with the uncertainty of measured environmental fate data and potential model inputs. In an
effort to evaluate this uncertainty, an initial sensitivity analysis was performed where key model input parameters for runoff and
leaching simulations were identified. Once the sensitive input parameters were identified, a Monte Carlo–based preprocessor was
developed whereby the sampling distributions of these parameters were used to propagate uncertainty in the input parameters into
error in model predictions. Importantly, assumptions about parameter distributions for input into the Monte Carlo tool were made
only after a formal detailed site-specific analysis of measured field data. Employing the functionality of the Crystal Ballt Pro
development environment, the pesticide root zone model (PRZM) 3.12 was run iteratively for 500 trials, and model output was
collated and analyzed. The model predictions were considered reasonably accurate for most regulatory requirements, and the model
prediction error was considered acceptable.
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INTRODUCTION

In 1992, the U.S. Environmental Protection Agency (U.S.
EPA) established a new paradigm for the evaluation of eco-
logical risk that identified computer modeling as a fast and
cost-effective exposure assessment tool compared to field stud-
ies. To address concerns regarding confidence in the use of
modeling as a regulatory tool, the need arose to assess the
correlation of model response estimates and measured data. In
conjunction with the evaluation of the correlation of model
response estimates and measured field data, a rigorous statis-
tically based validation was also warranted. Inherent within
any model validation process are uncertainties associated with
the model code, accepted modeling paradigms, model input
parameters, and the measured responses. For the purposes of
this validation exercise, the uncertainty associated with the
model code, accepted modeling paradigms, and measured re-
sponses were not addressed. Those uncertainties associated
with model input parameters were, however, closely examined.

An approach for the evaluation of the PRZM 1.0 perfor-
mance based on graphical comparisons of estimated and mea-
sured pesticide movement versus depth has been provided [1].
Observed and predicted response profiles demonstrated equiv-
alent pesticide mass over time. In a similar qualitative ap-
proach, the use of PRZM 1.0 was advocated for estimating
the magnitude of the depth and timing of the leading edge of
pesticide movement but not the ability of the model to predict
absolute concentrations [2]. The work of Leonard et al. [3]
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with the groundwater loading effects of agriculture manage-
ment system (GLEAMS) have shown via graphical means that
estimated values for mass of the parent and metabolites of
concern were comparable to measured data within the vari-
ability of the measured data. Simulated and observed concen-
trations at depth in the soil at selected dates also closely cor-
responded. The modified chemical runoff and erosion from
agriculture management system (CREAMS)/GLEAMS model
output response has also been shown via graphical means to
be comparable to measured data from field studies conducted
in Finland [4].

An extensive discussion regarding the implementation and
procedures for the validation of PRZM 1.0 and the risk of
unsaturated/saturated transport and transformation of chemical
concentrations (RUSTIC) model [5] have been presented [6].
The authors note that technical issues that require consider-
ation prior to a validation exercise include, among others, a
well-defined performance and acceptance criteria. The defi-
nition of performance criteria is a recurrent theme found
throughout the model validation literature. Defining the per-
formance criteria allows for the relative inaccuracies of model
responses versus measured data. In conjunction with an un-
published U.S. EPA report regarding the validation status of
the PRZM model, C.N. Smith et al. (1990) define performance
criteria based on the purpose of the modeling analysis. For
screening level analyses, a level of accuracy should be ex-
pected to be within an order of magnitude. For site-specific
or higher-tiered modeling exercises, the authors suggest that
a factor of two to four can be sufficient in certain instances
but that a factor of less than two may be appropriate in others.
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Fig. 1. Iowa, USA, corn site (IA2R) pesticide runoff mass. Monte
Carlo uncertainty analysis with all variables sampled simultaneously.
Box-and-whisker plots are model predictions; solid circles are mea-
sured values.

Statistical measures useful for the comparison of model
estimates versus measured data should include paired com-
parisons of predicted and observed values in space and time,
integrated comparisons relating to spatially or temporally com-
posited data such as monthly or annual means or totals versus
corresponding model estimates, and comparisons of cumula-
tive frequency distributions of observed data and model pre-
dictions in stochastic situations [6]. Statistical measures for
paired data and spatially and temporally integrated perfor-
mance tests include descriptive statistics, error and regression
analyses, and correlation coefficients. Plots of observed versus
predicted values were also advocated as visual indications of
agreement. The authors note that the variability associated with
model input can be addressed by employing Monte Carlo anal-
yses. Uncertainty analysis was discussed within the context of
the approaches outlined by Carsel et al. [6].

The performance of PRZM 1.0, GLEAMS 1.8.54, and the
pesticide component of the leaching estimation and chemistry
model (LEACHM 1.0) have been compared on the basis of
water mass balance, the transport of bromide, and the transport
and degradation of the reactive solute aldicarb [7]. Objective
criteria used to validate and compare the models included root-
mean-square error, normalized objective function, and reduced
error estimates. A description of model evaluation procedures
based on graphical displays and statistical criteria have sim-
ilarly been provided [8]. The statistical analyses discussed en-
compass the analysis of residual errors and the differences
between observed and predicted values. These include maxi-
mum error, root-mean-square error, coefficient of determina-
tion, modeling efficiency, and coefficient of residual mass.

The factor-of-f technique and measures of goodness of fit
have been employed to evaluate the predictive capabilities of
PRZM and the aggregate model for field transport and trans-
formation (AGGR) versus measured data [9,10]. The factor-
of-f technique defined the validity criteria based on the reg-
ulatory function of the models (U.S. EPA, 1982, unpublished
data) and reflects the 103 or 23 to 43 factor approach dis-
cussed previously. In addition, measures of goodness of fit
were employed based on the approach described by Loague
and Green [8]. Validation criteria have been discussed (B.
Allen et al., 1990, unpublished data) in conjunction with the
pesticide and industrial chemical risk analysis and hazard as-
sessment modeling suite (PIRANHA) [11]. The validity cri-
teria was defined such that the model was deemed valid if
predictions were within a factor of two of the measured data
at least 95% of the time. Both subjective (graphical) and ob-
jective (parametric statistics) criteria have been employed to
compare simulated versus measured data [12,13]. Zacharias et
al. [13] also presented robust quantitative techniques where
the validity of the statistical procedures was not dependent on
the assumption of a specific probability model of the popu-
lation. For model validation, this distribution-free analysis was
based on nonparametric techniques. Based on the study,
GLEAMS and PRZM performed well in predicting pesticide
mass but were less reliable in predicting pesticide concentra-
tion distributions in soil.

A stepwise process for the performance of model validation
under the auspices of the European Union Environmental Re-
search Programme has been described [14]. The models eval-
uated included PRZM 2.0, the pesticide component of
LEACHM [15], and the variable leaching model (VARLEACH
2.0). The authors suggest the use of preliminary subjective
graphical analysis in conjunction with objective statistical

analyses encompassing tests for evaluation of overall model
fit, degradational fit, and distributional fit. An approach for
evaluating and comparing the outcome from multiple models
has been described [16]. The paradigm for the validation pro-
cedure using field and lysimeter data sets entails a calibration
or model error minimization step and a subsequent model test
versus independent data. Models were evaluated using sub-
jective graphical and objective statistical measures. A multi-
tiered approach to model validation using both graphical and
statistical testing has been advocated [17]. The components of
the multitiered approach include a parameterization of the
model using only independently measured parameters, vali-
dation of water movement and water content of the soil, val-
idation of conserved solute movement, validation of pesticides
fate in the soil using parameters reflective of independently
measured fate information, and finally validation of pesticide
leaching in terms of comparisons of model predictions with
respect to patterns and orders of magnitude of occurrences.

It has been widely recognized that model input parameter
variability in both the spatial and the temporal sense have
significant impact on model response output. Initial efforts to
capture the effects of variability in the temporal sense focused
on the consequences of the long-term climatologic variation
[1]. Model parameterization reflecting, as examples, adsorp-
tion/desorption behavior and degradation were held constant,
and variability was introduced via the climate data. Thus, the
model could be used to infer the behavior of pesticide move-
ments under varied climatologic conditions. The drawback of
this approach is that it does not account for the inherent spatial
variability of, for example, degradation and adsorption/de-
sorption that is associated with field studies and the behavior
of chemicals under environmentally relevant conditions. Sub-
sequent work [6] employed Monte Carlo techniques to account
for the spatial variability noted with respect to soils in field
studies. Statistical transformation paradigms, particularly the
Johnson transformation technique and log transformations,
were used to convert original random variable, nonnormal soil
characterization data derived from a national database into
normal distributions. Monte Carlo techniques were used to
vary field capacity, wilting point and organic matter, soil hy-
drologic group, weather year, and degradation rate (triangular
distribution). While no validation exercise was performed, re-
sults pertinent to the current discussion demonstrated cumu-
lative probability distribution functions for annual pesticide
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Fig. 2. Iowa, USA, corn site (IA2R) pesticide mass in sediment. Monte
Carlo uncertainty analysis with all variables sampled simultaneously.
Box-and-whisker plots are model predictions; solid circles are mea-
sured values.

Table 1. Daily comparison of model predictions and measured values: Iowa, USA, corn (IA2R)a

Date Runoff variables Measured values

Predictions
exceeding

the measured
value (%)

1992: Day 195 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

319.200
1,543.000

0.330
1.380

69.2
59.6
82.8
59.6

1992: Day 196 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

21.900
73.000

0.029
0.062

38.6
30.0
43.8
34.8

1992: Day 207 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

3,170.800
10,022.000

9.000
18.900

53.0
68.6
67.4
30.6

1993: Day 169 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

688.700
16,980.000

0.792
16.100

45.0
0.0

60.6
0.2

1993: Day 180 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

185.700
2,619.000

3.270
26.200

36.4
8.2

27.2
1.0

1993: Day 181 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

11.700
4,208.000

0.046
9.550

36.4
0.0

38.4
0.0

1993: Day 185 Runoff volume (m3)
Sediment yield (kg)
Pesticide runoff mass (g)
Pesticide mass in sediment (g)

1,604.500
14,272.000

0.477
37.000

40.4
2.4

94.6
10.4

a Studies are identified by the state name, number of study, and the letter R, indicating a runoff study.

movement and the influence of model input variability on mod-
el response estimates.

A stochastic approach for the pesticide leaching model
(PELMO) has been developed and termed MCPELMO [18].
The MCPELMO is based on the deterministic PELMO model
but in addition has an incorporated shell allowing for the sto-
chastic simulations for a number of geographically diverse
regions. The authors concluded that the temporal variation
afforded by the weather data had a chemical specific impact
on model outcomes and also noted that spatial variability in

soil may be more influential than the temporal variability on
model estimates. A validation methodology for the pesticide
leaching and accumulation in soil model (PESTLA) has been
developed that includes both statistical and graphic analyses
[19]. The factor-of-f approach [10] was again used. The authors
also discuss an approach based not on the derivation of the
predicted mean from a deterministic simulation but on the
estimate of the predicted mean and predicted standard devi-
ation of model output based on a stochastic sampling approach
for model input variables. In addition to typical subjective and
objective measures, the authors advocate the use of compar-
isons of cumulative probability distribution functions of ob-
served and predicted data. As a follow-up to the previous
study, van den Bosch and Boesten [20] provide an approach
for validation of the PESTLA model where both graphical and
objective statistics were utilized. Estimated peak concentration
values were log transformed, and the average and standard
deviation of the average were calculated. The confidence in-
tervals around the average of the measured peak concentration
of one or two times the standard deviation were used to provide
a measure of the uncertainty associated with measured data.
The factor-of-f approach was applied where f 5 2 and f 5 5.

Eckhardt and Wagenet [21] evaluated the consequences of
the inherent variability in soil hydrology and chemical appli-
cations and the uncertainty of measurements of soil and chem-
ical properties on the leaching potential of atrazine. The model
employed was the pesticide component of LEACHM [15].
Following a calibration step, the impact on model output re-
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Table 2. Daily comparison of model predictions and measured values: Georgia, USA, cotton (GA1R)a

Date Runoff variables
Measured

values

Predictions
exceeding

the measured
value (%)

1989: Day 220
1989: Day 238
1989: Day 243
1989: Day 274

Pesticide runoff mass (g)
Pesticide runoff mass (g)
Pesticide runoff mass (g)
Pesticide runoff mass (g)

3.620
8.330
1.320
0.012

44.8
60.6
46.0
57.0

a See footnote in Table 1.

Fig. 3. Iowa, USA, corn site (IA2R) pesticide mass in sediment. Monte
Carlo uncertainty analysis with all variables sampled simultaneously.
Model predictions for 1992 with no measured runoff. Each plot on
the graph is an individual day.

sponse due to the uncertainty associated with two critical trans-
port parameters, unsaturated hydraulic conductivity and deg-
radation rates, were evaluated. Additionally, the effect on mod-
el output response due to the uncertainty associated with the
spatially heterogeneity of pesticide applications was evaluated.
The effects of spatial variability in the hydraulic conductivity
of the soil and the uncertainty of degradation rates below the
root zone were represented through discrete sampling from
probability density functions. The probability density func-
tions from which the discrete samples for hydraulic conduc-
tivity and pesticide degradation rate were selected were defined
on the basis of empirical data. The results clearly indicate that
the uncertainty associated with hydraulic conductivity, pesti-
cide degradation rate, and application rates substantially in-
fluenced model results.

Haan et al. [22] provide a discussion regarding the eval-
uation of model performance in a situation where no data are
observed on the quantities being modeled. Measured data was
therefore unavailable to assist in input parameter estimation
or model calibration. The procedures employed include the
conduct of a sensitivity analysis on model input parameters,
generation of probability distributions functions of input pa-
rameters, generation of probability distributions of model out-
put based on the input probability density functions, and finally
the use of the output probability distributions to assess the
model. The authors advocate that the use of the measured data
be held in reserve so that the measured data do not enter the
parameter estimation process. The authors note that the mea-
sured responses are also subject to uncertainty. The uncertainty
can also be quantified using probability density functions. The
overlap of the model output and measured response probability

density functions can, if available, be utilized to evaluate mod-
el performance.

APPROACH

As an initial step to evaluate the impact of uncertainty on
model performance, a sensitivity analysis was performed using
an approach based on that of Plackett and Burman [23] where
key model input parameters for runoff and leaching simula-
tions were identified [24]. The Plackett–Burman analysis re-
sults were used to develop a final list of most influential model
inputs for evaluation using Monte Carlo techniques. For each
of the final parameters, an attempt was made to define the
nature of the sampling distribution for use in the Monte Carlo
uncertainty analysis.

The results of the Plackett–Burman efforts to define the
most sensitive PRZM 3.12 model input parameters are pre-
sented here. The following were defined as the most sensitive
inputs, in descending order of sensitivity, affecting leaching
endpoints: bulk density (representing available water-holding
capacity), time-zero application rate variations, decay rate (soil
layer 1), decay rate (soil layers 2 and 3), maximum rooting
depth, adsorption coefficient (Kd illustrating in-field variabil-
ity), curve numbers 1 and 2, and pan evaporation factor.

For runoff analyses, the following were defined as the most
sensitive inputs, again in descending order of sensitivity: curve
numbers 1 and 2, adsorption coefficient (Kd illustrating in-field
variability), decay rate (soil layer 1), bulk density (representing
available water-holding capacity), foliar decay rate (the as-
sumption is that the foliar decay rate exhibits a similar coef-
ficient of variation and distribution as that for soil degradation
in soil layer 1), plant uptake factor (did not pursue uncertainty
analysis for this input), management factor 2, and time-zero
application rate variations.

For each of the preceding sensitive PRZM 3.12 input pa-
rameters, the nature of the sampling distribution for use in the
Monte Carlo uncertainty analysis was defined [25]. Specific
criteria were developed for establishing these sampling dis-
tributions. These criteria were used to ensure consistency in
the procedures for evaluating model prediction error across
sites. The criteria also ensured that the sampling distributions
represented, to the degree possible, the actual site-specific un-
certainty and variation in the parameters. Therefore, the criteria
effectively increased the confidence that the Monte Carlo un-
certainty analysis results reflect the true model prediction error
associated with a specific site and parameter set.

A set of interface tools were built to implement the Monte
Carlo sampling and analysis techniques with the PRZM 3.12
model [26]. The software chosen was the Crystal Ball Pro
package, manufactured by Decisioneering (Denver, CO), along
with some additional FORTRAN programs.
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Table 3. Distribution of model predictions for days with no measured values: Iowa, USA,
corn (IA2R)a

Percentage
of all

data with
zeros

Value of the model prediction
at selected percentiles

25% 50% 75% 90% 95%

Runoff volume (m3)
1992
1993

69.00
70.00

0.0
0.0

0.0
0.0

22.1
4.9

411.8
238.0

979.2
674.3

Sediment yield (kg)
1992
1993

69.00
70.00

0.0
0.0

0.0
0.0

8.6
0.8

646.7
202.7

3,797.5
1,523.0

Pesticide runoff mass (g)
1992
1993

70.00
75.00

0.0
0.0

0.0
0.0

0.0
0.0

1.0
0.2

3.4
1.0

Pesticide mass in sediment (g)
1992
1993

74.00
83.00

0.0
0.0

0.0
0.0

0.0
0.0

0.2
0.0

1.3
0.3

a See footnote in Table 1.

Table 4. Distribution of model predictions for days with no measured values: Georgia, USA,
cotton (GA1R)a

Percentage
of all

data with
zeros

Value of the model prediction
at selected percentiles

25% 50% 75% 90% 95%

Pesticide runoff mass (g)
1989 78.00 0.0 0.0 0.0 1.0 0.0

a See footnote in Table 1.

RESULTS

For the uncertainty analysis, model predictions were com-
pared to actual groundwater or surface water measurements.
Model predictions of interest for runoff analyses include the
following: runoff volume (m3/d), sediment yield (kg/d), pes-
ticide runoff mass (g/d), and pesticide mass in sediment (g/
d). For leaching simulations, the model predictions of interest
include pesticide mass in soil (g/kg), pesticide in pore water
(mg/L), and bromide in pore water (mg/L).

Graphical and tabular information have been generated for
comparing the measured field information and model predic-
tions. The ability of the model to predict runoff and leaching
factors on a daily basis was evaluated. For the current exercise,
no attempt was made to scale up the analyses to monthly or
yearly comparisons. In addition, no attempt was made to com-
pare results across sites. By using the smallest time-scale avail-
able (days), the effect of uncontrolled temporal and spatial
influences on the comparison results was reduced. However,
the error in model parameterization was incorporated into the
comparison through the use of Monte Carlo analysis and gen-
eration of a prediction distribution, which represents the un-
certainty in model predictions, conditional on the understand-
ing and measurement of the model input parameters.

Variability about the measured data

Because the measured data used in the studies consisted of
proprietary information generated in support of product reg-
istrations, it was required that the current analyses be con-
ducted in a manner that ensured data confidentiality. Addi-
tionally, in order to limit modeler bias, model simulations and

all subsequent analyses were conducted without access to the
original study reports. Because of these constraints, measured
data for the runoff studies were provided as a mean of the
analytical replicates for each specific sample date. For the
leaching analyses, minimum, maximum, and mean values were
provided for each sample date. For the leaching studies typical
minimum and maximum pesticide soil core concentrations
ranged from 25.4 to 28.4 mg/kg (mean 27.4 mg/kg) and 25.4
to 95.8 mg/kg (mean 67 mg/kg). Typical minimum and max-
imum pesticide soil pore-water concentrations ranged from
0.05 to 0.928 mg/L (mean 0.36 mg/L) and 0.121 to 3.1 mg/L
(mean 1.16 mg/L). Typical minimum and maximum bromide
soil pore-water concentrations ranged from 46 to 90 mg/L
(mean 68 mg/L) and 0.25 to 100 mg/L (mean 43.4 mg/L).
Importantly, significant percentages of the measured data ex-
hibited no variability with the minimum, maximum, and mean
values reported to be at the level of quantification (LOQ).
Because of these limitations (data accessibility), the require-
ment for confidentiality, and the associated limited variability,
uncertainties associated with daily field measurements were
not included in the analysis.

Sources of uncertainty associated with the measured data
include the spatial variation within the field site and sample
variation, that is, the variability associated with multiple soil
core, soil pore-water, or runoff measurements and the vari-
ability associated with analytical methods. One would antic-
ipate that the variability associated with the former two sources
could be considerable, while that for the latter would be min-
imal. In view of the uncertainty associated with the measured
data, the current analysis is therefore conservative. Allowing
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Fig. 4. Georgia, USA, sweet corn site (GA1L) pesticide mass in soil
0 to 15 cm (year 1). Monte Carlo uncertainty analysis with all variables
sampled simultaneously. Box-and-whisker plots are model predic-
tions; solid circles are measured values.

Fig. 6. Georgia, USA, sweet corn site (GA1L) bromide in pore water
180 cm (year 1). Monte Carlo uncertainty analysis with all variables
sampled simultaneously. Box-and-whisker plots are model predic-
tions; solid circles are measured values.

Fig. 5. Georgia, USA, sweet corn site (GA1L) pesticide in pore water
90 cm (year 1). Monte Carlo uncertainty analysis with all variables
sampled simultaneously. Box-and-whisker plots are model predic-
tions; solid circles are measured values.

for the uncertainty associated with the measured values would
increase the overlap of model outcome distributions with dis-
tributions representative of the measured data.

Box-and-whisker plots for representative analyses are pre-
sented to graphically compare measured field information and
model predictions. For each day that a field measurement was
available, a box-and-whisker plot of the model predictions was
overlain on a marker for the value of the field measurement.
The box-and-whisker plot displays the lowest, 25th-percentile,
median, 75th-percentile, and maximum value for the model
predictions (based on 500 iterations). Examination of the plot
shows the relative number of model predictions below and
above the measured value as well as the relationship of the
measured value to specific statistics of the prediction distri-
bution (median, 25th percentile, and so on). Model accuracy
was evaluated by examining the percentage of model predic-
tions below and above the measured value. When the measured
field value was shown to be in the general center of the pre-
diction distribution, the model can be considered reasonably
predictive. When the measured value was seen in the lower
or upper portions of the prediction distribution, the model can
be considered less accurate (within the bounds of uncertainty)
but acceptable given the variability in the model parameters.
If the entire prediction distribution is above or below the mea-
sured value, the model may be considered inaccurate for that
day. However, in some circumstances this latter scenario does
not hold. In particular, for very small measured values (near

the LOQ), the model is frequently shown to predict into the
range below the detection level or only slightly above the
detection value. By convention the measured value was always
reported as one-half the LOQ. Subsequently, model outcomes
that predict below one-half the LOQ may show a disagreement
between the measured and the predicted values. Practically,
however, the model and measured values show good agreement
in this case, with the comparison truncated at the limit of
quantification. In addition, the model predictions and measured
values were frequently found to significantly disagree when
the values were above but very near the LOQ. While the mea-
sured and predicted values differ, in many cases the difference
was not practically relevant given the small magnitude of the
recorded numbers. Measured values near the limit of quanti-
fication provide a basis for judging the ability of the model to
predict pesticide concentrations at low magnitude.

Tables are provided that show the percentage of model
predictions (out of 500 iterations) that exceed the measured
field value. A 100% exceedence indicates that the model pre-
dicted high, and a 0% exceedence indicates that the model
predicted low. Again, the magnitude of the measured values
should be used to evaluate the significance of these extreme
scenarios.

Runoff: Iowa, USA, corn (IA2R)

The Iowa site (IA2R) was a field-scale runoff study with
natural rainfall conducted on corn in a large (7 ha) watershed
in Oskaloosa, Iowa (Mahaska County). Figures 1 and 2 present
the Monte Carlo results for pesticide mass in runoff and sed-
iment for site IA2R. Seven days, spanning two years, had
measured runoff values. Table 1 presents information on the
number of predictions exceeding the measured value. For run-
off volume, all measured values fell within the interquartile
range (between the 25th and the 75th percentile of the pre-
diction distribution) of the model predictions, indicating that
the model was very reliable. For sediment yield, measured
values fell within the interquartile range for 3 d, within the
bounds of the distribution for 2 d, and outside the bounds of
the distribution for 2 d. For dissolved pesticide runoff mass,
five of seven measured values fell within the interquartile
range, and the remaining measurements fell within the bounds
of the distribution. For pesticide mass in sediment, three mea-
sured values fell within the interquartile range of the predic-
tions, three fell within the bounds of the predictions, and one
fell outside the bounds of the model predictions.



1584 Environ. Toxicol. Chem. 21, 2002 J.P. Carbone et al.

Table 5. Daily comparison of model predictions and measured values: Georgia, USA, sweet corn (GA1L)a

Julian
day

Soil horizon
depth (cm)

Measured
pesticide
(mg/kg)

Percentage
exceedence

Lysimeter
depth

Measured
pesticide
(mg/L)

Percentage
exceedence

Measured
bromide
(mg/L)

Percentage
exceedence

224
224
224
226
226
226

0–15
15–30
30–45

67
0.5
0.5

80.2
0
0

90
180
270

90
180
270

0.25
NAb

0.38

0
NA

0

226
236
236
236
236
237

45–60
0–15

15–30
30–45
45–60
0–15

NA
40.33

0.5
0.5

NA
122.8

NA
17.4
98.2
68.2
NA
15.4

90
180
270
360

0.05
0.05
0.05
0.05

0
0
0
0

3.58
0.25
0.38

100
100

0

237
237
237
246
246
246
246
247

15–30
30–45
45–60
0–15

15–30
30–45
45–60
0–15

0.5
0.5

NA
35.77

3.53
0.5
0.5

94.33

97
65.6
NA
52.8
61.1
47.8

2.6
57.7

90
180
270
360

90

0.05
0.05
0.05
0.05

0
0
0
0

43.42 100
247
247

15–30
30–45

1.3
0.5

73.7
45.9

180
270

15.13
0.25

0
0

247
257
257
257
257

45–60
0–15

15–30
30–45
45–60

0.5
27.4
0.71
0.5
0.5

2.6
60.9
91.1
69.2
43.7

90
180
270
360

0.05
0.05
0.05
0.05

0
0
0
0

258
258
258

0–15
15–30
30–45

102.4
12.33

0.5

39.5
42.5
68.2

90
180
270

93.33
25.13

0.25

88.6
100
100

258
267
267
267
267

45–60
0–15

15–30
30–45
45–60

0.5
30.5

0.5
0.5

NA

42.7
62.8
78.7
56.1
NA

90
180
270
360

0.05
0.05
0.05
0.05

0
0
0
0

268
268
268

0–15
15–30
30–45

80.93
0.5
0.5

58.7
76.9
54.7

90
180
270

113.3
30.13

0.25

11.4
100
100

268
289
289
289

45–60
0–15

15–30
30–45

NA
422
13.07

0.5

NA
32.4
81.6
95.7

90
180
270

0.05
0.32
0.08

100
0
0

51.2
68
33

0
0

100
289
316
316
316

45–60
0–15

15–30
30–45

0.5
22.47

2.96
0.5

97.6
59.5
68.8
70.8

360
90

180
270

0.05
0.05
0.05
0.05

0
100

0
0

59
27.5
12

0
100
100

316
343
343
343
343

45–60
0–15

15–30
30–45
45–60

0.5
10.11

2.18
0.85
0.5

78.1
26.7
53.6
55.9
61.1

360
90

180
270
360

0.05
0.05
0.05
0.48
0.05

0
100

0
0
0

344
344
344
371
371
371
371
399
399
399
399

0–15
15–30
30–45
45–60
0–15

15–30
30–45
45–60

5.28
2.96
1.27
0.5
3.91
2.45
0.88
0.75

11.6
32.2
36.8
50

0
9.6

24.8
32

90
180
270

90
180
270
360

90
180
270
360

0.05
0.05
0.33
0.05
0.12
0.05
0.15
0.05

100
0
0
0

97.8
0
0
0

8.37
30
20
20
14

9
0.05

10
12

8
0.05

0
0

100
0
0

100
0
0
0
0
0

433
433

0–15
15–30

3.27
1.1

0
1.6

433
433

30–45
45–60

0.5
0.5

14.4
21.2

434
434
434
434

90
180
270
360

0.05
0.05
0.17
0.05

0
0
0
0

2.8
10.33

5.5
0.05

0
0
0
0



Uncertainty analysis in model validation Environ. Toxicol. Chem. 21, 2002 1585

Table 5. Continued

Julian
day

Soil horizon
depth (cm)

Measured
pesticide
(mg/kg)

Percentage
exceedence

Lysimeter
depth

Measured
pesticide
(mg/L)

Percentage
exceedence

Measured
bromide
(mg/L)

Percentage
exceedence

468
468
468
468

0–15
15–30
30–45
45–60

3.37
0.94
0.5
0.5

0
0
2
8.8

469
469
469
469

90
180
270
360

0.13
0.05
0.23
0.1

0
0
0
0

NA
6.7
3.33
0.1

NA
0
0
0

496
496
496
496

0–15
15–30
30–45
45–60

4.96
1.85
0.5
0.5

0
0
1.4
7.6

497
497
497
497

90
180
270
360

0.3
0.05
0.31
0.16

0
0
0
0

1.1
0.7
2.83
0.16

0
0
0
0

525
525
525
525

0–15
15–30
30–45
45–60

2.31
0.5
0.5

NA

0
0
0

NA
526
526
526
526
554
554
554
554

0–15
15–30
30–45
45–60

0.5
0.5
0.5

NA

0
0
0

NA

90
180
270
360

90
180
270
360

0.21
1.16
0.25
0.05
0.05
0.38
0.36
0.18

0
0
0
0
0
0
0
0

0.25
2.5
2.7
0.05

0.18

0
0
0
0

0
587
587
587
587
625
625
625
625
652
652

0–15
15–30
30–45
45–60
0–15

15–30
30–45
45–60
0–15

15–30

0.5
0.5
0.5

NA
0.5
0.5
0.5

NA
0.5
0.5

0
0
0

NA
0
0
0

NA
0
0

652
652

30–45
45–60

0.5
0.5

0
0

a See footnote in Table 1.
b NA 5 data not available.

Runoff: Georgia, USA, cotton (GA1R)

Study site GA1R was a field-scale runoff study with natural
rainfall conducted on cotton in a small watershed in southern
Georgia (Colquitt County). Pesticide runoff mass was the only
value measured at site GA1R. Table 2 shows the percentage
exceedence values for the 4 d on which measurements were
available. For all days, the measured value fell within the
interquartile range of the model predictions.

Runoff: Days with zero runoff measurements

For the runoff field studies, runoff volume, sediment yield,
pesticide runoff mass, and pesticide mass in sediment were
monitored continuously for each day of the sampling periods
at both the IA2R and the GA1R site. Those days with positive
measurements were evaluated in the preceding tables and fig-
ures. For all other days, the measured values were assumed
to be zero. At issue is whether PRZM 3.12 was able to predict
zero or low values on those days where no runoff, sediment
loss, runoff flux, or pesticide mass in sediment were recorded
in the field.

Cumulative distributions of the model predictions (over the

500 Monte Carlo iterations) on those days where no runoff
volume, sediment yield, dissolved pesticide runoff mass, or
pesticide mass adsorbed to sediment were recorded at site
IA2R in 1992. Figure 3 illustrates the results of the Monte
Carlo uncertainty analysis for those days where no pesticide
mass in sediment were recorded in the field. Similar data were
generated for runoff volume, sediment yield, and dissolved
pesticide mass for both 1992 and 1993 but have not been
presented. Table 3 presents summary statistics of the infor-
mation. Specifically, Table 3 presents the percentage of all
model predictions that were zero or greater. Table 3 illustrates
the frequency with which the model confirmed the measured
values of zero for the four runoff variables. The information
demonstrates that for some days the model clearly predicts
positive values when the field monitors showed no measurable
results. For most of these days, however, the model predicted
values of small magnitude, near the limit of detection. For a
small number of days, the model had large positive predictions.
Intuitively, these data are not unanticipated given the nature
of the Monte Carlo sampling procedure. For each input pa-
rameter defined via sensitivity analysis as exerting a significant



1586 Environ. Toxicol. Chem. 21, 2002 J.P. Carbone et al.

influence on model outcome, Monte Carlo sampling from a
defined distribution would invariably produce a combination
of values with a small likelihood of true occurrence. The com-
bination of these input parameters would likely generate a
relatively small number of predictions that would occur with
low probability. Those low probability input combinations may
produce those traces with high positive values (although the
cause of these high positive values was not rigorously eval-
uated). However, overall at least 69% of all model predictions
for a specific runoff variable were zero. The highest concor-
dance was seen in the pesticide mass in sediment variable in
1983, where 83% of the model predictions equaled zero on
days where no pesticide mass in sediment was measured.

Table 4 illustrates the distribution of Monte Carlo predic-
tions for runoff mass for days with no measured values for
the GA1R study. The data indicate that 78% of the Monte
Carlo predictions were zero.

Leaching: Georgia sweet corn (GA1L)

Field study GA1L was a conventional small-scale pro-
spective groundwater study conducted in a highly vulnerable
agronomic setting on sweet corn in south-central Georgia.
Box-and-whisker plots were generated for the leaching vari-
ables. Incremental depth intervals equaled 0 to 15, 15 to 30,
30 to 45, and 45 to 60 cm for the leaching variable pesticide
mass in soil and depths of 90, 180, 270, and 360 cm for the
leaching variables pesticide in pore water and bromide in pore
water. Representative box-and-whisker plots are presented for
the leaching variables pesticide mass in soil (0–15 cm, year
1) (Fig. 4), pesticide in pore water (90 cm) (Fig. 5), and bro-
mide in pore water (180 cm) (Fig. 6). Percentage exceedence
calculations for GA1L are presented in Table 5.

Of the 43 pesticide mass in soil values in year 1, 27 fell
within the interquartile range of the model predictions; that
is, the percentage exceedence values ranged between 25 and
75% (Table 5). Eleven of the remaining days at which the
measured data fell outside the interquartile range had measured
values at or below the LOQ and were therefore set to 0.5 mg/
kg for purposes of this analysis. Only 5 d with measurements
greater than the LOQ fell outside the interquartile range. All
measurements were within the bounds of the prediction inter-
val. In year 2, four of 36 measured values fell within the
interquartile range. But 22 of the days exhibited values less
than or equal to the LOQ. The remaining measured values
were less than 5 mg/kg.

Only three measured values for pesticide in pore water were
greater than the LOQ (set to one-half the LOQ, or 0.05 mg/L
for purposes of the analysis) in year 1, and the largest of these
three values was 0.48 mg/L. In year 2, 12 of the 28 measured
values were less than or equal to the LOQ. The model un-
derpredicted the measured values in 26 of the 28 possible
cases; that is, the percentage exceedence was less than 25%
(Table 5). Of the 16 measured values greater than one-half the
LOQ, the largest value was 1.16 mg/L, and the remainder of
the measured values were below 0.38 mg/L. Importantly, these
measured concentrations are very small and are likely to be
environmentally irrelevant.

For bromide in pore water in both years 1 and 2, the mea-
sured values did not fall within the interquartile range of model
outcome distributions. Eight measured values were equivalent
to one-half the LOQ (0.05 mg/L), and the remaining 49 mea-
sured values ranged from 0.10 to 113.30 mg/L. Model distri-
bution outcomes underpredicted the measured values in 34 of

the 47 cases and overpredicted the remaining 13 cases (Table
5). Measurements and model distribution outcomes, while typ-
ically not overlapping, were increasingly more correlative with
depth and time. Importantly, the estimated spatial and temporal
profile or pattern of pore-water bromide movement through
the soil core was highly correlated to the measured data. Sev-
eral conclusions can be drawn from the data: In this instance,
the model can be considered inaccurate with regard to esti-
mating the magnitude of the bromide pore-water concentration
on a daily basis, and the model can be considered accurate in
estimating the spatial and temporal movement of the tracer.
The discrepancy in the magnitude of the estimated and mea-
sured pore-water bromide concentrations is likely due to the
inability to precisely simulate bromide uptake by plant ma-
terial, the variability associated with sampling of soil pore
water via suction lysimeters, and its associated uncertainty and
discrepancies related to estimating evapotranspiration.

Leaching: North Carolina, USA, soybeans (NC4L)

Field study NC4L was a conventional small-scale prospec-
tive groundwater study conducted in a highly vulnerable ag-
ronomic setting on soybeans in North Carolina. Percentage
exceedence calculations are presented in Table 6.

In year 1, the predictive pattern of the model for large
measured values of pesticide mass in soil ($150 mg/kg) was
inconsistent with model outcome distributions. Measured val-
ues fell outside the model prediction interquartile range with
estimates either greater than or less than measured data. For
smaller measured values (#50 mg/kg), the model outcome
distributions tended to underpredict the measured data. Of the
53 nonzero measured values equaling #50 mg/kg, two fell
within the interquartile range, and 43 values were underpre-
dicted where the percentage exceedence was less than 25%.
As the depth increased and the measured concentrations de-
creased, the model did predict small concentrations. In year
2, a similar pattern held with the model underpredicting small
values. Of the 26 measured values ranging from 21.5 to 0.5
mg/kg, all were underpredicted. However, as the depth of the
soil profile increased and the measured concentrations became
increasingly small, the model prediction error decreased. Be-
ginning at the 45- to 60-cm soil core segment, any discrep-
ancies between model estimates and measured soil core pes-
ticide concentrations were not substantial.

Of the year 1 pesticide in pore water values greater than
10 mg/L, one fell within the interquartile range of the model
predictions, and two more fell within the model prediction
bounds. Of those concentrations greater than zero and less than
10 mg/L, seven of the eight measured values were overpre-
dicted by the model. No measured values were greater than
10 mg/L in year 2. The model underpredicted 16 of the 17
available data points that were, however, small in magnitude.
During the course of the two-year study, several pesticide soil
pore-water measurements resulted in nondetectable residues.
The model overpredicted three of seven nondetects. Three of
the remaining estimates were underpredictive, and for one
measurement the model percentage exceedence was within the
interquartile range.

Bromide soil pore-water prediction distributions and mea-
sured data generally show a similar pattern with depth and
time. Of the 18 available measured data points, one fell within
the interquartile range of the model distribution outcomes. The
model underpredicted eight values. However, the magnitude
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Table 6. Daily comparison of model predictions and measured values: North Carolina, USA, soybeans (NC4L)a

Julian
day

Soil horizon
depth (cm)

Measured
pesticide
(mg/kg)

Percentage
exceedence

Lysimeter
depth

Measured
pesticide
(mg/L)

Percentage
exceedence

Measured
bromide
(mg/L)

Percentage
exceedence

136
136
136
136
136
136
136
136

0–15
15–30
30–45
45–60
60–75
75–90
90–105

105–120

330.3
3.53
0.67
0
0

NAb

NA
NA

0
0
0
0
0

NA
NA
NA

137
137
137
137
137
137
137
137

0–15
15–30
30–45
45–60
60–75
75–90
90–105

105–120

157.4
2.23
0
0
0

NA
NA
NA

100
0
0
0
0

NA
NA
NA

143
143
143
143
143

0–15
15–30
30–45
45–60
60–75

176.6
2.53
0
0
0

98.2
0
0
0
0

143
143
143

75–90
90–105

105–120

NA
NA
NA

NA
NA
NA

149
149
149

90
150
210

0
0
0

0
0
0

0.09
0.11
0.12

0
0
0

150
150
150
150
150
150
150
150

0–15
15–30
30–45
45–60
60–75
75–90
90–105

105–120

203.5
1.83
0
0
0

NA
NA
NA

92
0
0
0
0

NA
NA
NA

168
168
168

0–15
15–30
30–45

145.8
16.17
1.7

0
99.4
99.6

90
150
210

0
0
0

100
99.8
71.4

1.18
0.07
0.09

100
100
100

168
168
168
168
168

45–60
60–75
75–90
90–105

105–120

0
0
4.4
0
0

100
100
13
99.8
99.8

197
197
197

0–15
15–30
30–45

56.67
36.67
10.93

0
0

16.4

90
150
210

14.44
0.5
0.25

99.2
99.8
99.8

30.28
19.82
11.86

100
100
100

197
197
197
197
197

45–60
60–75
75–90
90–105

105–120

6.63
5.23

10.83
2.5
0.7

62.2
92.6
76
98.2
99.6

239
239
239

0–15
15–30
30–45

21
16.77
5.6

0
0
0

90
150
210

15.98
11.69

3.65

0
57.8
98.8

2.09
3.39
1.72

0
0

100
239
239
239
239
239

45–60
60–75
75–90
90–105

105–120

3.2
2.87
2.73
2.13
1.37

0
0
0
0
0

260
260
260

0–15
15–30
30–45

21.97
15.6
5.23

0
0
0

90
150
210

19.7
12.57

8

0
0

97.8

NA
1.38
1.28

NA
0

100
260
260
260

45–60
60–75
75–90

3.2
2.9
2.87

0
0
0

260
260

90–105
105–120

1.23
0

0
98.4

295
295
295

90
150
210

11.21
7.26
5.4

0
99.6
96.8

0.54
1.34
1.16

0
0

62.6
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Table 6. Continued

Julian
day

Soil horizon
depth (cm)

Measured
pesticide
(mg/kg)

Percentage
exceedence

Lysimeter
depth

Measured
pesticide
(mg/L)

Percentage
exceedence

Measured
bromide
(mg/L)

Percentage
exceedence

296
296
296
296
296
296
296
296

0–15
15–30
30–45
45–60
60–75
75–90
90–105

105–120

22.03
15.8
4
3.03
2.03
2.37
1.4
0.8

0
0
0
0
0

30.2
0
0

322
322
322

0–15
15–30
30–45

17.87
10.83
2.83

0
0
0

90
150
210

12.34
15.05

9.22

0
99.2
48.4

322
322
322
322
322

45–60
60–75
75–90
90–105

105–120

1.43
0.73
1.27
0.43
0.33

0
0

99.6
0
0

350 0–15 15.1 0 90 11.58 0
350
350

15–30
30–45

11.57
3.77

0
0

150
210

6.44
12.25

75.2
0

350
350
350
350
350

45–60
60–75
75–90
90–105

105–120

2
0.9
1.47
0.37
0

0
0

94
0

100
384
384
384

0–15
15–30
30–45

17.9
6.53
2.3

0
0
0

90
150
210

2.77
9.16
2.81

0
0
0

384
384
384
384
384
413
413
413

45–60
60–75
75–90
90–105

105–120
0–15

15–30
30–45

1.47
0.57
0.37
0
0

16.87
13.43
4.87

0
0
0

99.8
99.8
0
0
0

90
150
210

2.74
6.59
1.32

0
0
0

413
413
413
413

45–60
60–75
75–90
90–105

1.6
2
0.37
0.57

0
0
0
0

413
440
440
440

105–120
0–15

15–30
30–45

0.4
17.57
9.6
2.2

0
0
0
0

90
150
210

2.24
4.19
2.81

0
0
0

440
440
440
440
440

45–60
60–75
75–90
90–105

105–120

1.47
0
0
0
0

0
66.4
82.8
98.6
99.8

474
474
474

90
150
210

NA
0.56
0

NA
0

100
475
475
475
475
475
475
475
475

0–15
15–30
30–45
45–60
60–75
75–90
90–105

105–120

13.43
8.8
0.97
0.5
0.37
0
0
0

0
0
0
0
0

43
61.4
77.6

502
502

90
150

3.52
4.71

0
0

502 210 1.82 0
503
503
503
503
503
503
503
503

0–15
15–30
30–45
45–60
60–75
75–90
90–105

105–120

21.5
14.1
7.25
3.35
4.63
2.43
0.9
0.37

0
0
0
0
0
0
0
0
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Table 6. Continued

Julian
day

Soil horizon
depth (cm)

Measured
pesticide
(mg/kg)

Percentage
exceedence

Lysimeter
depth

Measured
pesticide
(mg/L)

Percentage
exceedence

Measured
bromide
(mg/L)

Percentage
exceedence

530
530
530

90
150
210

3.2
5.85
4.83

0
0
0

a See footnote in Table 1.
b NA 5 data not available.

of the differences between the measured data and estimate
distributions was generally minimal.

DISCUSSION

These results serve to demonstrate the feasibility and utility
of evaluating the effects of model input uncertainty on PRZM
3.12 outcomes. In general, when model input uncertainty was
accounted for, the correlation of model outcome distributions
and measured data was reasonably to exceptionally well cor-
related. This conclusion can be drawn despite the fact that the
uncertainty bounding the measured values was not factored
into the analysis. Pennell et al. [7] conclude that the ability to
validate model predictions of concentration distributions may
ultimately be limited by the inability to account for the un-
certainty in measured data from within the field. Given the
expected uncertainty in the measured data, the degree of pre-
diction error and measurement error would make it increas-
ingly difficult to detect differences.

The current state of the science with regard to exposure
analysis is such that evaluation of model predictive accuracy
is often assessed via the factor-of-f approach [9,10,20]. Com-
parisons of model estimates versus measured values are often
considered successful within two-, five- and 10-fold differ-
ences. The Monte Carlo–driven output distribution approach
extends the factor-of-f approach discussed within the literature
because it adds an empirical aspect to the analysis. Rather than
set an arbitrary level for accuracy, as an example, a factor of
five, this approach allows the nature of the measured data
serving as input to set the bounds that define the precision of
the model. Measured values falling within the interquartile
range of an outcome distribution lead to the conclusion that
the model is reasonably predictive. Given the state of the sci-
ence of exposure analysis, even when measured values fall
within the outcome distribution bounds, the model should be
considered predictive. It is important to note, however, that
the scale of the measurement influences the degree of required
accuracy. Based on the current analysis, it has been shown
that for small concentrations (e.g., less than 5 mg/L of pesticide
or pesticide concentrations approximating the LOQ), the cri-
teria for accuracy need not be as rigorous. Differences in model
outcome distributions and measured data in instances where
the magnitude of the scale of the measured data is small or
approaches the LOQ become less critical. Typically, the mag-
nitude of those differences is beyond the desired level of model
accuracy and environmental relevance.

An important aspect of the current approach that should be
emphasized is that the nature of the input distributions defines
the output distributions. Subjective and incorrect assumptions
about the nature of the input distributions, while allowing for
the generation of seemingly accurate output distributions, can
provide spurious results. In the process outlined in this dis-
cussion, the nature of the input parameter distributions was

carefully explored as deeply as the data would allow. In those
instances where considerable uncertainty existed about the in-
put parameter distribution, the conservative assumption was
taken. Typically, a uniform distribution was assigned to those
uncertain input parameter distributions where any one value
within the bounds of the distribution had an equal probability
of selection. One flaw in the current analysis is the depth of
information about each of the available input parameters. Fu-
ture work should focus on enriching the database from which
these assumptions about distributions can be made.

Loague and Green [8] and others note that statistical anal-
yses using pairwise correlation or hypothesis testing can suffer
from potential serious flaws because of sample size deficien-
cies. Preliminary efforts for this study centered on pairwise
correlation and hypothesis-testing statistical approaches for es-
timating model accuracy. Ultimately, the efforts refocused on
the Monte Carlo approach because the classical statistical ap-
proach was hampered by small sample sizes and differences
in phase timing that led to conclusions of reduced model ac-
curacy.

Importantly, the Monte Carlo approach lends itself to the
current trend in environmental risk analyses where stochastic
predictions are favored over single-point deterministic results.
Clearly, under environmental conditions, the magnitude of as-
sociated uncertainties makes the utility of a single determin-
istic model prediction debatable.
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