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Abstract—Individuals from the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Environmental Model Validation
Task Force (FEMVTF) Statistics Committee periodically met to discuss the mechanism for conducting an uncertainty analysis of
Version 3.12 of the pesticide root zone model (PRZM 3.12) and to identify those model input parameters that most contribute to
model prediction error. This activity was part of a larger project evaluating PRZM 3.12. The goal of the uncertainty analysis was
to compare site-specific model predictions and field measurements using the variability in each as a basis of comparison. Monte
Carlo analysis was used as an integral tool for judging the model’s ability to predict accurately. The model was judged on how
well it predicts measured values, taking into account the uncertainty in the model predictions. Monte Carlo analysis provides the
tool for inferring model prediction uncertainty. We argue that this is a fairer test of the model than a simple one-to-one comparison
between predictions and measurements. Because models are known to be imperfect predictors prior to running the model, the
inaccuracy in model predictions should be considered when models are judged for their predictive ability. Otherwise, complex
models can easily fail a validation test. Few complex models, such as PRZM 3.12, would pass a typical model validation exercise.
This paper describes the approaches to the validation of PRZM 3.12 used by the committee and discusses issues in sampling
distribution selection and appropriate statistics for interpreting the model validation results.

Keywords—Federal Insecticide, Fungicide, and Rodenticide Act Uncertainty analysis Model validation Monte Carlo
Pesticide root zone model

INTRODUCTION

Ecological risk assessments are uncertain because of the
complexity of ecological systems and the costs of collecting
the data required to predict the behavior of such systems. This
is true for both the exposure and the effects components of
ecological risk assessment as outlined by the U.S. Environ-
mental Protection Agency [1]. Yet the vast majority of eco-
logical risk assessments conducted to date have been based on
conservative and deterministic quotients that have not been
supported by a quantitative uncertainty analysis. An uncer-
tainty analysis, if performed, is typically restricted to a list of
sources of uncertainty and perhaps qualitative statements of
believability or confidence in the estimated quotients. As a
result, risk managers and interested parties are not aware of
the extent of uncertainty in the risk assessment and its con-
sequences to the decision-making process.

A properly constructed uncertainty analysis can be used
directly in the risk calculations, but it can also be used to judge
the validity of both the exposure and the effects estimates
independently. In particular, Monte Carlo analysis of complex
models can be an integral tool for judging a model’s ability
to predict accurately. Monte Carlo analysis can be used for
model validation. The model is judged on how well it predicts
measured values, taking into account the uncertainty in the
model predictions. Monte Carlo analysis provides the tool for
inferring model prediction uncertainty. We argue that this is
a fairer test of the model than a simple one-to-one comparison
between predictions and measurements. Because models are
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known to be imperfect predictors prior to running the model,
the inaccuracy in model predictions should be considered when
models are judged for their predictive ability. Otherwise, com-
plex models can easily fail a validation test. Few complex
models, such as the pesticide root zone model, would pass a
typical model validation exercise.

In most model validation frameworks, the model is asked
to accurately predict a measured value, and the validity of the
model is judged on the basis of a statistical estimate of the
difference between the model prediction and the measured
value. Typical estimators of model accuracy are the mean
squared error, paired t statistic, correlation statistics, and oth-
ers. While these statistics may or may not be valid indicators
of statistical accuracy, a larger issue arises in that these sta-
tistics do not reflect the uncertainty in model use, such as the
decisions made in model calibration, model structure, or choice
of time step. In some sense, the statistics are bottom-line in-
tegrators of the results of the many decisions made prior to
running the model. But, we argue, a simple comparison of
observations and predictions is a naive approximation of the
usefulness of the model or the expected inferences that can be
drawn from the model output.

Do standard validation statistics reflect a degree of belief
in the model output? They do, but not a comprehensive one.
For example, a classical paired t statistic comparing model
predictions and field measurements uses the variance in the
paired differences as a basis for the test statistic. The variance
reflects the range of paired differences within the data set. Is
this an appropriate estimator for model validation? One per-
spective is that the estimator integrates all sources of uncer-
tainty into the paired difference and is directly related to the
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Fig. 1. The Monte Carlo process.

hypotheses under evaluation (H0: m 5 0, where m is the true
average difference between the paired model predictions and
measurements). However, this estimator cannot directly in-
corporate sources of uncertainty, such as sampling error, tem-
poral and spatial components, operator error, and other issues
that are not a direct statement about the model itself, but reflect
the available information and operator proficiency at the time
the model was run. Monte Carlo analysis, on the other hand,
provides a tool for incorporating all types of uncertainty. We
argue that a true test of the model should reflect the total
uncertainty in the modeling procedure and the model inputs
at the time the model was run. The Monte Carlo outputs can
be directly compared to field measurements as a method of
model validation, thus incorporating the many sources of un-
certainty into a decision about model validity.

Monte Carlo analysis is a conceptually simple tool that
requires a great deal of thought to implement properly. The
method is a process by which a degree of belief is inferred
about the uncertainty in model predictions. Monte Carlo anal-
ysis is a series of cascading choices resulting in an estimate
of model prediction error. In most real-world problems, a large
degree of uncertainty is inherent in the choice of data set,
treatment of outlying data points, choice of model, choice of
spatial and temporal scales, choice of sampling distribution
and associated parameters, and so on. The analyst is faced with
many decisions before implementing the Monte Carlo analysis
and is subsequently faced with the challenge of interpreting
the final output. Each choice the investigator makes plays a
role in the interpretation of the Monte Carlo predictive dis-
tribution and in the expectation that decisions made based on
the analysis are indeed correct.

MONTE CARLO ANALYSIS

The underlying theory of Monte Carlo analysis is grounded
in the long-run frequency interpretation of statistics and, in
this sense, is an inherently frequentist (classical statistics) con-
cept. In Monte Carlo analysis, samples are drawn from a dis-
tribution. As more and more samples are drawn, the mean of
the samples is assumed to converge to the most likely value
of the parameter (expected value). This convergence assump-
tion is the basis for Monte Carlo theory and, in practice, is
implemented by the repeated drawing of samples from the
parameter sampling distribution (see Fig. 1).

Monte Carlo sampling is discussed extensively in Ham-
mersley and Handscomb [2], Kloek and Van Dijk [3], Ham-
mersley and Morton [4], and Wilson [5]. For Monte Carlo
results to be believable, the convergence properties of the Mon-
te Carlo estimators must be met. Several statistical and prac-
tical limitations exist in this regard. The most important prac-
tical limitations of Monte Carlo are misspecification of the
sampling distribution; use of Monte Carlo sampling with a
large number of parameters, particularly when the parameters
are represented by different classes of distributions; and im-
plementation with a relatively small number of iterations. For
example, the distribution from which the samples are drawn
is assumed to be the true distribution of the parameter of
interest. To the degree that the sample distribution differs from
the actual distribution, the confidence in the Monte Carlo re-
sults is decreased. Just how close these distributions must be
is a complicated statistical issue that is frequently unclear. In
a practical sense, if misspecification of a sampling distribution
occurs for a very sensitive parameter in a multiparameter mod-
el, then the confidence in the Monte Carlo results would be
greatly diminished because the model prediction would be
greatly influenced by that parameter.

What is clear, however, is that the ‘‘garbage in, garbage
out’’ adage applies. For example, many risk assessment studies
use complicated exposure and population models with little or
no field measurements available for parameterizing the model.
The investigators make up distributions for some or all of the
model inputs as part of a conceived Monte Carlo analysis. The
investigators then initiate the Monte Carlo run, often with a
small number of iterations, and examine the resultant distri-
bution of the model predictions. Frequently, the scientists find
the upper 95th percentile of the model predictions and use this
value in a decision-making context. While the investigator is
willing to expend many hours performing the Monte Carlo
analysis, little time is given to activities that would increase
the confidence in the Monte Carlo results. Warren-Hicks and
Butcher [6] showed that small changes in the distributional
assumptions of a Monte Carlo analysis performed using a typ-
ical population model (;12 input parameters) can drastically
change the shape of the resultant Monte Carlo distribution. In
particular, sampling from a series of independent normal dis-
tributions results in a very different Monte Carlo result than
if a multivariate normal distribution (with an appropriate co-
variance matrix) is used. The underlying statistical theory be-
hind Monte Carlo assumes that enough iterations are imple-
mented for the convergence properties of the Monte Carlo
estimators to hold. Again, the number of iterations required is
not clear, particularly with disparate distributional assumptions
among a large number of parameters. In hindsight, the inves-
tigator may actually have greater confidence in a small number
of data samples on the parameter of interest in lieu of per-
forming Monte Carlo analysis on a model for which basic
parameterization and verification studies have not been im-
plemented.

Burmaster and Anderson [7] have proposed 14 ‘‘principles
of good practice’’ for using Monte Carlo techniques. They
suggest that ‘‘before an analyst undertakes an MC [Monte
Carlo] risk assessment . . . she or he should read widely in
the growing literature on probabilistic risk assessment.’’ Prin-
ciples for a properly conducted Monte Carlo analysis have also
been proposed by the U.S. Environmental Protection Agency
[8].

Conventional Monte Carlo methods are used only to un-
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derstand how a model’s parameter uncertainty may affect the
model’s prediction. This approach accounts for only a part of
the total uncertainty. Uncertainty due to the data used for model
calibration is not considered. In addition, almost all applica-
tions of Monte Carlo methods in model uncertainty analysis
assume that the parameter distributions are given. New data
are usually not used for updating information on parameter
uncertainty. This practice is inefficient and sometimes may be
misleading.

Many analysts do not understand the mathematics under-
lying the Monte Carlo method. While simple in concept, the
underlying theory is very complex. An understanding of the
theory is important from the following perspectives: The an-
alyst is better able to judge the effect of decisions made during
the course of the analysis, the analyst is better able to explain
and communicate the results of the Monte Carlo analysis and
the statistical endpoints, and the analyst is better equipped to
combine the Monte Carlo results with other analyses in a com-
plex risk framework (e.g., combining exposure and effects
distributions into a risk distribution).

The Monte Carlo method provides approximate solutions
to a variety of mathematical problems by performing statistical
sampling experiments on a computer. The modern Monte Carlo
method originated during the development of atomic energy
in the post–World War II era, when it was used to provide
solutions to the integral-differential equations. Later, the con-
cept of using sampling experiments on a computer came to
prevail in many scientific disciplines. Compared to other nu-
merical methods, the Monte Carlo method is efficient with
regard to computing time and easy to implement and under-
stand. Using Monte Carlo methods for simulating the propa-
gation of input errors through model predictions was initiated
by O’Neill [9] and McGrath and Irving [10].

The most common applications of the Monte Carlo method
in numerical computation are for evaluating integrals. Monte
Carlo methods can also be used in solving systems of equa-
tions. All instances of Monte Carlo simulation can be reduced
to the evaluation of a definite integral like the following:

b

m 5 f (x) dx (1)E
a

Formally, suppose we have a random variable, X, which has
measurements over the range a to b. Also, assume that the
probability density function of X can be written as p(x). In
addition, assume a second function, g, such that g(x)p(x) 5
f(x). For example, g(x) could represent a dose–response func-
tion on concentration and p(x) is the density on concentration.
The expected value (which is the most likely value or the mean
value) of g(x) is m:

b b

E(g(X )) 5 g(x)p(x) dx 5 f (x) dx 5 m (2)E E
a a

Notice that Equation 2 can be reduced to the same form as
Equation 1. Estimating the expected value of g(x) is a familiar
statistical problem. A natural way of doing this is to take a
random sample from xi with distribution p(x) and use the sam-
ple mean of g(xi) as an estimate of m, that is,

Step 1. Draw random samples from p(x):

x ; p(x), for I 5 1, . . . , ni

Step 2. Calculate the sample mean:

n1
m̂ 5 g(x ) (3)O in i51

This estimate has a variance of
2b b1

Var(m̂) 5 g(x) 2 g(t) dt dx (4)E E1 2n a a

As a simple example, suppose that X is a random variable
with a uniform density over the interval [a, b] with p(x)5 1/
(b 2 a). As a result, g(x) 5 (b 2 a)f(x). The integral is es-
timated by

m 5 (b 2 a) E( f(X)) (5)

The sample mean is calculated as

(b 2 a)
m 5 f (x ) (6)O in

where xi are values of a random sample of size n from a uniform
distribution over (a, b). The estimate is unbiased [11], and the
variance of the estimate is

2b bb 2 a
Var(m̂) 5 f (x) 2 f (t) dt dx (7)E E1 2n a a

The estimated m is based on a sample of simulated data;
as a result, sampling error is always associated with the es-
timate. The law of large numbers states that the sample mean
converges to the true mean in probability as the sample size
increases:

lim Pr(zm̂ 2 mz , «) 5 1 (8)
n→`

In other words, a large sample size is necessary to reduce this
sampling error.

In addition to increasing the sample size, reducing the sam-
pling error can be done through efficient sampling. The Latin
hypercube sampling is the most frequently used sampling tech-
nique for reducing Monte Carlo sampling error [12–14].

This method is designed to reduce sampling variance when
sampling from several covariates. The technique uses a bal-
anced or partially balanced fractional factorial design to sam-
ple, such that the sampling variance would be small at a given
number of sample size. The Latin hypercube method was de-
veloped by McKay et al. [15] for providing input to a computer
experiment. If the k covariates are uniform U(0, 1), the ith
sample of the jth variate is sampled by

p (i) 2 1 1 uj jiv 5 (9)j n

where pj(·), j 5 1, . . . , k are permutations of the integers 1,
. . . , n, sampled randomly, independently, and with replace-
ment from the set of n! possible permutations, pj(I) is the ith
element of the jth permutation, n is the sample size, and uj is
an independent sample from U(0, 1). Many researchers show
that using Latin hypercube sampling can reduce the variance
of the Monte Carlo estimator [12–14].

Using sampling experiment terminology, uncertain model
parameters can be regarded as factors that contribute to the
variation of the response. A Monte Carlo simulation is to sam-
ple all possible outcomes of the factors and study the impact
they have on the response. The result from a Monte Carlo
simulation is a collection of response data. These numbers can
be summarized to produce statistics of interest, such as the
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mean and variance. Let g(x) be the model with uncertain var-
iable x with probability distribution p(x). The model output y
5 g(x) is a random variable. A typical Monte Carlo simulation
procedure starts with a sample of uncertain model parameters
q randomly generated from the density p(x). The sample is
then used as realizations of true model parameters, and the
corresponding model responses are evaluated. The mean and
variance of the resulting model responses are often examined
and used as estimates of the true mean and variance of y. The
arithmetic mean of the Monte Carlo samples of model response
is equivalent to the integral

ȳ 5 g(x)p(x) dx (10)E
Q

and the variance of the model output is equivalent to the in-
tegral

2Var(y) 5 (g(x) 2 ȳ) p(x) dx (11)E
The first integral (Eqn. 10) can be evaluated by first gen-

erating a sample of x and then calculating the sample mean
of g(x). The second integral (Eqn. 11) can be evaluated by
first generating a sample of x and then calculating the sample
variance of g(x), which is the mean of (g(x) 2 ȳ)2. In other
words, the mean of the model prediction is the integral of f(x)
5 g(x)p(x). The importance of selecting the correct parameter
distribution functions is self-evident. If an incorrect probability
distribution for the uncertain parameter is used, the resulting
estimates of the mean and variance are wrong.

The FEMVTF Statistics Committee process

As indicated in the previous discussion, Monte Carlo anal-
ysis is a multifaceted process and requires a great deal of
consideration prior to implementing the model. The process
by which Monte Carlo was implemented by the FEMVTF
Statistics Committee provides an excellent case study on the
steps and dynamics of implementing a Monte Carlo analysis
with limited data.

Individuals from the FEMVTF Statistics Committee met to
discuss the mechanism for conducting an uncertainty analysis
of the PRZM 3.12 model and to identify those model input
parameters that most contribute to model prediction error. This
activity is part of a larger project evaluating the PRZM 3.12
model. The goal of the uncertainty analysis is to compare site-
specific model predictions and field measurements using the
variability in each as a basis of comparison.

To identify the most sensitive model input parameters, the
committee relied on the results of a FEMVTF Plackett–Burh-
man analysis [16]. The Plackett–Burhman technique identifies
those model inputs that cause the greatest change in model
predictions as the values of the input parameters are varied.
The committee discussed the Plackett–Burhman results and
developed a final list of model inputs for evaluation using
Monte Carlo techniques. For each of the final parameters, the
committee attempted to define the nature of the sampling dis-
tribution for use in the Monte Carlo uncertainty analysis. Sev-
eral of the committee members agreed to supply data or anal-
yses that provide insight into the sampling distributions of the
PRZM 3.12 input parameters selected for evaluation.

The team developed criteria for establishing sampling dis-
tributions of the PRZM 3.12 inputs. These criteria were used
to ensure consistency in the procedures for evaluating model

prediction error across sites. The criteria also ensure that the
sampling distributions represent, to the degree possible, the
actual site-specific uncertainty and variation in the parameters.
Therefore, the criteria effectively increase the confidence that
the Monte Carlo uncertainty analysis results reflect the true
model error associated with a specific site and parameter set.
In addition, the criteria provide a record against which the
sampling distributions can be judged. Criteria for input pa-
rameter sampling distributions follow.

First, the sampling distributions must explicitly reflect with-
in-site variation of the input parameters. This criterion ensures
that intra- and intersite variation are explicitly identified and
that any confounding of these types of variation is avoided
(unless explicitly stated). For example, it would be inappro-
priate to have one input parameter distribution reflect within-
site variation and the distribution for a second parameter to
reflect between-site variation. The interpretation of the Monte
Carlo output is difficult with such a parameterization.

Ideally, the input distribution should represent the range of
possible values of the parameter for the explicit application of
the model at a specific site. Preferably, actual field measure-
ments of the parameter should be used to establish the distri-
bution. Contributions to the prediction variance of intersite
and interchemical components of uncertainty should not be
used explicitly to judge model prediction accuracy. However,
model runs that incorporate such variance components can be
used to test the sensitivity of the model to the largest possible
input parameter variance. In fact, incorporating the intersite
and interchemical components of variation can be used to eval-
uate the expected model prediction error with small or non-
existent site-specific data sets.

Second, the form of the sampling distribution should be
consistent between sites for a specific parameter. However, the
sufficient statistics of the distribution may change. For ex-
ample, if a normal distribution is chosen for a parameter at
one site, then a normal distribution should be used at all other
sites. However, the mean and variance of the normal distri-
bution can be site specific.

This criterion ensures consistency in the interpretation of
the Monte Carlo outputs between sites. It also provides a foun-
dation for dealing with sparse data sets for specific parameters
at some sites. In many cases, as few as two or three obser-
vations of the parameter are available at one site, with more
data available at other sites. Therefore, we can use the site
with the most data to determine the form of the distribution,
with the sufficient statistics calculated on a site-specific basis.
In addition, a consistent interpretation of the shape and spread
of the Monte Carlo outputs between sites requires a consistent
use of parameter-specific sampling distributions. The shape of
the Monte Carlo prediction distribution is generally a function
of the input distributions. The use of consistent input distri-
bution forms allows the shape of the Monte Carlo output dis-
tributions between sites to be compared. For example, the
output distribution may be fatter at one site than another. And
finally, no scientific or modeling reason exists to believe that
the form of the distribution for a specific input parameter
should change between sites.

Third, the form of the distribution should reflect the mag-
nitude, range, and interpretation of the parameter. Many of the
input parameters have restricted ranges. For example, appli-
cation rate cannot be negative. The sampling distribution
should reflect the restricted range, with no chance of randomly
drawing a negative value. The effect of this criterion is to
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restrict the use of a normal distribution and increase the use
of uniform, lognormal, beta, and custom distributions (random
draws of actual measurements substitute for a formal distri-
bution).

In addition, this criterion ensures that the expected site-
specific range of a parameter is covered by the selected dis-
tribution. It also ensures that values outside the expected range
are not overemphasized. For example, use of uniform distri-
butions over a narrow range may be appropriate when the
probability of occurrence of any parameter value is equal over
the range.

Finally, expert judgment in establishing site-specific dis-
tributions is appropriate when few data are available, but a
sensitivity test of the choice of distribution is required. For
most input parameters, expert judgment is involved in the
selection and calibration of the sampling distributions. We will
perform sensitivity tests to evaluate changes in the Monte
Carlo outputs with choice of distribution.

The FEMVTF Statistics Committee paid close attention to
the procedural and statistical pitfalls of Monte Carlo analysis.
The committee implemented the following activities as an ef-
fort to ensure the correct implementation of the Monte Carlo
analysis: Strict guidelines were developed for the selection of
sampling distributions for the input parameters (see the pre-
vious discussion); numerous information sources, databases,
and experts were identified and consulted in the course of
selecting the input parameter sampling distributions; a rigorous
evaluation of statistical correlation among the input parameters
was undertaken (the committee concluded that no statistical
correlation exists between the parameters selected for evalu-
ation); and a comprehensive sensitivity testing of the Monte
Carlo outputs is planned in an effort to ensure results that are
not overly dependent on the committee’s assumptions and in-
terpretations.

Site-specific sampling distributions for 11 parameters were
generated for model applications at four case study sites.
Groundwater measurements were available from U.S. sites in
Georgia (GA1L) and North Carolina (NC4L), while runoff
measurements were available from sites in Iowa (IA2R) and
Georgia (GA1R). Appendix 1 presents the final sampling dis-
tributions and sources of information. A complete discussion
of the experimental protocol is found in Carbone et al. [17].
A discussion of the methods for generating Monte Carlo pre-
dictions from PRZM 3.12 is found in Havens [18].

Of particular interest is the committee’s use of the uniform
distribution to represent many of the random parameters in the
model. Information on the chemical decay rate was available
for three of the four case study sites. The data sets at each site
typically had 30 to 40 observations. Standard distribution fit-
ting techniques on these relatively large data sets consistently
yielded a beta distribution as the best fit. In addition, the com-
mittee agreed that the resulting shape of the beta distribution
at the case study sites consistently matched the expert opinion
as to the shape and scale of the distributions. However, for all
other parameters, the amount of site-specific data was much
less, with data sets containing from two to eight values. The
committee decided that such small data sets were inadequate
for establishing the shape of the sampling distributions but
were adequate for establishing the parameter range for a spe-
cific location. Several important reasons exist for the use of
the uniform distribution. First, the distribution reflects the de-
gree of belief of the committee members with regard to the
shape of the sampling distribution. For most case study lo-

cations, the frequency of occurrence for specific values of the
parameter is unknown, and the existing data sets were not large
enough for estimation. Second, from a model validation per-
spective, the major role of the sampling distribution is to bound
the model predictions. The probability (or frequency) of oc-
currence within the bounds is of little interest. The objective
is to evaluate the probability that field-specific measured values
fall within the model predictions. Finally, as discussed earlier
in this paper, the degree of belief in the Monte Carlo output
is directly related to the understanding and belief in the pa-
rameter sampling distribution. The shape of the distribution is
unknown and not easily estimable at most sites for most pa-
rameters, but the scale is reasonably defined. Therefore, the
uniform distribution reflects the amount of knowledge and
degree of belief that the committee had in the parameter sam-
pling distributions, thus providing a basis for understanding
and interpreting the final Monte Carlo predictive distributions.
The width of the uniform distributions did not mask the ability
to interpret site-to-site differences in model predictions. The
authors feel that uniform distributions are more reflective of
the true amount of knowledge in many model uncertainty anal-
yses with limited data. The uniform distribution provides a
reasonable alternative to guessing at the shapes of sampling
distributions for limited data or limited knowledge situations.

Statistical comparisons of model predictions and field
measurements

The choice of test statistic will directly influence the in-
terpretation of the model validation results. A variety of sta-
tistical estimators and approaches can be used to compare
model predictions with field observations, each test statistic
possibly resulting in a different interpretation of model per-
formance. Several test statistics and approaches were consid-
ered, as described in the following.

First, a one-to-one comparison of a model prediction to a
field measurement was considered. A number of statistics are
available, including mean squared error, absolute value of the
differences, and others. In this approach, the model will be
found to perform well only if the model provides a close
estimate of individual measured values for a specific time step,
depth (for leaching runs), or integrated runoff estimate (runoff
comparisons). For complicated models like PRZM 3.12, asking
the model to be accurate for small increments of space and
time may not be a reasonable test of the model. In addition,
the test statistics are highly influenced by individual data points
where the modeled and measured values are far apart. Also,
this approach does not consider model prediction error or mea-
surement error in the interpretation of model performance.
Finally, the PRZM 3.12 model predictions are generally not
used on a point-by-point basis. Typically, the predictions over
space or time are compiled, and sufficient statistics are used
for interpretation and evaluation. Therefore, a one-to-one mod-
el validation approach does not reflect the practical use of the
model outputs.

A probabilistic comparison of model predictions and field
measurements was also considered. In this approach, model
error is incorporated into the interpretation of model perfor-
mance. Monte Carlo methods are used to provide uncertainty
estimates for the model predictions at each time step and depth
(leaching only). A comparison of the model predictive distri-
bution at each time step and depth to a single measurement
directly incorporates parameter uncertainty into the interpre-
tation of model performance. We note that this approach does
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Fig. 2. Monte Carlo output: Runoff volume (m3): 1992, day 195. Fig. 3. Sediment yield (kg): 1992, day 195.

not incorporate other important variance components, such as
model structure error, between-user error, and measurement
error. However, if estimates of these variance components are
available, they can easily be incorporated into the uncertainty
analysis framework [19]. In this study, estimates of these var-
iance components were not available and are not included in
the analytical approach. We note, however, that the addition
of such components will serve to increase the model prediction
variance, resulting in the interpretation of increased model
performance.

The objective of the validation exercise is to ascertain mod-
el performance under conditions of typical use. Therefore, the
committee decided to use the second approach described pre-
viously for model validation. The first approach was judged
to be an overly stringent analysis, serving to increase the
chance that the model would not pass the validation exercise.

The test statistic for the second approach can be written as

n

X {X 5 1 if P $ M , else X 5 0}O i i i j i
i51PE 5 · 100 (12)

n

where PE is percentage exceedence, n 5 number of Monte
Carlo iterations, Mj {j 5 1 to the number of field observations}
is an individual field measurement, Pi {i 5 1 to the number
of Monte Carlo iterations} is an individual model prediction,
and Xi is an indicator variable.

The expected value of PE is 50%, indicating that half the
model predictions are above the measurement and half are
below the measurement. Model accuracy is evaluated by ex-
amining the percentage of model predictions below and above
the measured value. When the measured field value is shown
to be in the general center of the prediction distribution, the
model can be considered to be reasonably predictive. When
the measured value occurs in the lower or upper portions of
the prediction distribution, the model can be considered less
accurate (within the bounds of uncertainty) but acceptable giv-
en the variability in the model parameters. If the entire pre-
diction distribution is above or below the measured value, then
the model may be considered to be inaccurate for those given
circumstances. In some circumstances, however, this latter in-
terpretation does not hold. In particular, for very small mea-
sured values (near the level of quantification), the model is
frequently shown to predict into the range below the detection
level or only slightly above the detection value. Carbone et
al. [17] provide a discussion of this issue.

VALIDATION RESULTS

A complete discussion of the model validation results is
found in Carbone et al. [17]. Examples of the Monte Carlo
predictions are shown in Figures 2 and 3 of this paper. As
shown in the figures, the beta distribution for the chemical
decay rate is controlling the shape of the predictive distribu-

tions, while the scale of the resulting distributions is heavily
influenced by the uniform distributions assigned to the re-
maining random parameters. In general, the model is shown
to be a reasonable predictor of groundwater and runoff pes-
ticide concentrations.

CONCLUSIONS

This paper describes an approach for model validation using
Monte Carlo methods. This project was unique because of the
interaction of committee members representing both the gov-
ernment and industry and the process by which a consensus
was built as to the philosophical and statistical approach to
model validation. Monte Carlo methods are shown to be a
useful tool for model validation, incorporating important
sources of uncertainty into the interpretation of model per-
formance. A distinct advantage exists to the use of Monte Carlo
analysis for model validation over typical model validation
approaches. The uncertainty in the model input parameters is
directly incorporated into the interpretation of model perfor-
mance. The choice of the uniform distribution to reflect the
committee’s degree of belief is an extremely important point
of this exercise and may be at odds with other, similar pub-
lications on model uncertainty analysis. In addition, the use
of the percentage exceedence statistic as an appropriate sta-
tistic for model validation is an important contribution of the
paper. Finally, establishing criteria for model validation, and
reflecting those criteria in the choice of Monte Carlo sampling
distributions and validation statistics, is shown to be a viable
group-oriented process for model validation.
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soil profile. For example, the total soil depth in the IA2R scenario is
91 cm, even though maximum rooting depth can range up to 122 cm.
The Monte Carlo application does an error check, and if the rooting
depth sampled is greater than the soil profile depth, the rooting depth
is set to the depth of the soil profile (e.g., to 91 cm in IA2R).
Distribution: Uniform
Corn, Midwest:
Corn, Southeast:

0.457–1.219 m
0.32–0.9 m

Soybeans: 0.65–0.90 m
Data sources: Crop Parameter Intelligent Database [20]; Robertson et
al. [21]; Jung and Taylor [22]; Borst and Thatcher [23]; Mayaki et
al. [24].

3. Curve Numbers
Distribution: Uniform

GA1R:
Fallow:
Cropping:
Residue:

82–88
73–91
75–81

IA2R:
Fallow:
Cropping:
Residue:

82–88
45–100
75–81

Data source: Site specific based on measured rainfall and runoff data;
PRZM 3.12 user manual.

4. Kd (cm3/g)
Distribution: Uniform
GA1L: 0.25–0.36
Data source: Registrant chemical specific data package. Measured Koc

was used to generate a chemical specific regression equation relating
Koc and organic carbon (OC) to Kd. The regression equation was then
used in a Monte Carlo analysis in conjunction with measured soil
organic carbon to generate a distribution of potential Kd values across
the site.
NC4L: 0.02–0.19
Data source: Registrant chemical specific data package. Measured Koc

was used in a Monte Carlo analysis in conjunction with measured
soil OC [Kd 5 Koc·OC/100] to generate a distribution of potential Kd

values across the site.
IA2R: 18.7–208

To set Kd for the lower soil horizons, the following procedure was
used: Koc was calculated from the sample Kd value (Koc(1) 5 Kd(1)/
0.0183; horizon 1 has 1.83% OC):

K (2) 5 K (1) ·0.0135(horizon 2 has 1.35% OC)d oc

K (3) 5 K (1) ·0.0093(horizon 3 has 0.93% OC)d oc

K (4) 5 K (1) ·0.0057(horizon 4 has 0.57% OC)d oc

Data source: Registrant chemical specific data package. Measured Koc

was used in a Monte Carlo analysis in conjunction with measured
soil OC (Kd 5 Koc·OC/100) to generate a distribution of potential Kd

values across the site.
GA1R: No site-specific information is available.

5. Bulk Density (g/cm3)
Distribution: Uniform
Note: The bulk density distributions are depth specific. When models
are run at depths that do not match the measured field data, field data
associated with the nearest reasonable depth are used to parameterize
the model.
GA1R: No data available

Site Depth (cm)
Range of

bulk density

IA2R 10
30
60
90

1.10–1.19
1.07–1.27
1.02–1.36
1.09–1.28

Data source: Registrant chemical specific data package.

APPENDIX

Sampling distributions for selected uncertain parameters in Version
3.12 of the pesticide root zone model

1. Chemical Decay Rate (d21)
Distribution: Beta

Because these are log10 transforms of the dissipation rate constant
data, the following procedure was employed where the rate constant
was set using the following formula: k 5 2ln(0.5)/(10b) (where the
superscript b is the sampled value from the beta distribution) (this
assumes first-order degradation kinetics):

GA1L: a 5 4.00 b 5 9.92 scale 5 3.37(log10data)

NC4L: a 5 4.58 b 5 0.68 scale 5 2.75(log10data)

IA2R: a 5 2.33 b 5 0.46 scale 5 1.53(log10data)

GA1R: No data available.
Data source: Registrant chemical specific data package.

2. Rooting Depth (cm)
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Site Depth (cm)
Range of

bulk density

GA1L 15
30
45
60
75
90

105
120
135
150

1.49–1.56
1.49–1.60
1.49–1.57
1.49–1.59
1.54–1.59
1.54–1.57
1.54–1.57
1.54–1.57
1.54–1.62
1.54–1.59

Data source: Registrant chemical specific data package.

Site Depth (cm)
Range of

bulk density

NC4L 0
15
30

1.45–1.54
1.38–1.52
1.42–1.53

45
60
75
90

105
120
135
150
165
180
195
210
225
240
255
270
285
300
315

1.40–1.54
1.39–1.50
1.40–1.43
1.37–1.43
1.39–1.45
1.41–1.49
1.40–1.49
1.48–1.49
1.45–1.48
1.42–1.43
1.43–1.48
1.46–1.54
1.46–1.56
1.43–1.53
1.43–1.47
1.44–1.45
1.44–1.47
1.45–1.46
1.43–1.45

Data source: Registrant chemical specific data package.

6. Bulk Density
Global variability: 13–16.2% RUSTIC user manual.

7. Pan Factor (%)
Distribution: Uniform
GA1L and GA1R:
IA2R:
NC4L:

75–77
71–73
75–77

8. Application Rate (kg/ha)
Distribution: Uniform
NC4L:
GA1L:
GA1R:
IA2R:

No site-specific data.
0.15–0.32
0.13–0.22
0.94–2.12

Data source: Registrant chemical specific data package.

9. Management Factor (%)
Management factors are taken from predicting rainfall erosion losses

[24]. Each matrix below is crop and crop practice specific. Crop-
specific USLEC value ranges were selected from those presented by
Wischmeier and Smith [25] to most closely approximate plant growth
stages as constrained by PRZM input requirements reflecting fallow,
cropping, and residue conditions.
Distribution: Uniform
GA1R: Annual cotton, conventional moldboard

plow and disk
Fallow period:
Seedbed period:
Crop stage 1 (establishment):

36–42
59–68
59–63

Crop stage 2 (development):
Crop stage 3 (maturing crop):

43–49
22–44

IA2R: Corn after corn in meadowless systems, spring moldboard
plow, crop residues left on field
Fallow period:
Seedbed period:
Crop stage 1 (establishment)
Crop stage 2 (development):
Crop stage 3 (maturing crop):
4L (residue):

31–51
55–68
48–60
38–45
20–33
23–47

GA1L: Corn after corn
as for GA1R

NC4L: Soybeans after corn, spring moldboard plow, crop residues
left on field, plow disk and harrow for seedbed
Fallow period:
Seedbed period:
Crop stage 1 (establishment):
Crop stage 2 (development):
Crop stage 3 (maturing crop):

33–45
60–68
52–60
38–43
17–29


