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Abstract—The first activity of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Environmental Model Validation
Task Force, established to increase confidence in the use of environmental models used in regulatory assessments, was to review
the literature information on validation of the pesticide root zone model (PRZM) and the groundwater loading effects of agricultural
management systems (GLEAMS). This literature information indicates that these models generally predict the same or greater
leaching than observed in actual field measurements, suggesting that these models are suitable for use in regulatory assessments.
However, additional validation research conducted using the newest versions of the models would help improve confidence in
runoff and leaching predictions because significant revisions have been made in models over the years, few of the literature studies
focused on runoff losses, the number of studies having quantitative validation results is minimal, and modelers were aware of the
field results in most of the literature studies. Areas for special consideration in conducting model validation research include
improving the process for selecting input parameters, developing recommendations for performing calibration simulations, devising
appropriate procedures for keeping results of field studies from modelers performing simulations to validate model predictions
while providing access for calibration simulations, and developing quantitative statistical procedures for comparing model predictions
with experimental results.
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INTRODUCTION

Environmental fate models have been used to describe the
behavior of crop protection products in the environment since
the early 1980s. The pesticide analytical solution model (PES-
TAN) [1] and early versions PRZM [2] were used by the U.S.
Environmental Protection Agency (U.S. EPA) and industry to
evaluate potential movement to groundwater. Both GLEAMS
[3] and PRZM were linked to the exposure analysis modeling
system (EXAMS) [4] to provide estimates of concentrations
of crop protection products in surface water resulting from
runoff and later spray drift. The use of models was not re-
stricted just to the United States; the earliest version of the
pesticide leaching model (PELMO) [5] was released in 1988
for evaluating potential movement of crop protection products
to groundwater as part of the registration process in Germany
and began to be used routinely.

By 1990, the use of models to predict potential concentra-
tions of crop protection products in the environment had been
firmly established. In the United States, both the U.S. EPA
and industry routinely used models to estimate potential con-
centrations in surface water. Although the U.S. EPA currently
does not use mechanistic models for assessing risk to ground-
water in registration decisions, industry has made extensive
use of models to better understand and steward its products.
At this time, German regulatory agencies also began to use
the results of PELMO simulations as a trigger for conducting
lysimeter studies.

In recent years, the importance of modeling for evaluating
environmental exposure has continued to increase. In 1992 the
U.S. EPA established a new paradigm for the evaluation of
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ecological risk that recommended computer modeling as a
cost-effective exposure assessment tool that could help speed
up regulatory decision making (L.J. Fisher, 1992, Decisions
on the Ecological, Fate, and Effects Task Force, Memorandum
to D. Campt, Office of Pesticide Programs, U.S. Environmental
Protection Agency, Washington, DC). Modeling was also in-
corporated into the European Union registration process for
estimating potential concentrations of crop protection products
and their metabolites in surface soil, surface water, and ground-
water as well as a trigger for lysimeter or field leaching studies.
A database containing cropping information, climatological
data, and soil properties—the spatial environmental informa-
tion system for modeling the impact of chemicals (SEIS-
MIC)—was developed for use in modeling assessments of
environmental risk in the United Kingdom [6] during the reg-
istration process.

As a result of the increased regulatory use of environmental
models, several work groups consisting of regulators, industry,
and research institutes/environmental consulting firms have
been established to develop procedures for the use of these
models in estimating environmental concentrations for regu-
latory risk assessment. Two of the most active are the FIFRA
Exposure Modeling Work Group in the United States and the
Forum for International Coordination of Pesticide Fate Models
and Their Use (FOCUS) in Europe. Issues that these two
groups have faced include establishment of good modeling
practices, tiered assessment procedures, standardization of
models and procedures used in regulatory modeling, limita-
tions of existing models, and accuracy and precision of existing
models used to predict environmental concentrations of crop
protection products. The topic of model validation also has
been extensively discussed in both groups. In addition, the
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Table 1. A partial listing of model validation or calibration studies conducted with GLEAMS and PRZM

Reference Models Locations Compounds Soil types

Barrett [19]
Cai et al. [20]
Carsel et al. [2]
Carsel et al. [21]

PRZM
PRZM
PRZM
PRZM

Kansas, USA
Jiangsu province, China
New York, USA
Florida, USA
Maryland, USA

Triasulfuron
Aldicarb
Aldicarb
Metalaxyl

Las Animas loamy sand
Sandy loam
Haven sandy loam
Blanton fine sand
Marton fine sandy loam

Dibbern and
Pestemer [22]

GLEAMS, PRZM,
CALF, LEACHM,
SESOIL, EQUI

Germany Terbuthylazine Loess soil

Dowd et al. [23] PRZM Georgia, USA Lindane Cecil (clayey thermic, typic
kanhapludult)

Flori et al. [24] PRZM Po Valley, Italy Metamitron, chloridazon,
ethofumesate, lenacil

Field capacity and wilting
point of 33 and 10 vol %

Hegg et al. [25] PRZM South Carolina, USA Aldicarb Dothan loamy sand
Jones et al. [26] PRZM Florida, USA Aldicarb Sand and fine sands
Jones et al. [27] PRZM Arizona, USA

California, USA
Florida, USA
Indiana, USA
Maine, USA
Michigan, USA
Nebraska, USA
New York, USA
North Carolina, USA
South Carolina, USA
Virginia, USA
Washington, USA
Wisconsin, USA

Aldicarb, aldoxycarb
Aldicarb
Aldicarb, aldoxycarb
Aldicarb
Aldicarb
Aldicarb
Aldicarb
Aldicarb
Aldicarb, aldoxycarb
Aldicarb
Aldicarb, aldoxycarb
Aldicarb
Aldicarb, aldoxycarb

Sandy loam
Loamy sand and sandy loam
Sand and fine sands
Silty clay loam
Loam
Sandy loam
Loamy sand
Sandy loam
Sandy loam
Dothan loamy sand
Clay loam
Sandy loam
Sand, loamy sand, and sandy

loam
Jones et al. [28]
Khan and Green [29]

PRZM
PRZM

Nebraska, USA
Hawaii, USA

Aldicarb
DBCP

Loamy sand
Pauwela clay and

Hamakuapoko silty clay
Leonard et al. [30] GLEAMS Georgia, USA Fenamiphos Cowarts loamy sand
Loague [31]

Loague et al. [32]

PRZM

PRZM

Hawaii, USA

Hawaii, USA

EDB

EDB

Leilehua (humoxic
tropohumults)

Leilehua (humoxic
tropohumults), Wahiawa
(tropeptic eutrustox)

Loague et al. [33]
Loague et al. [15]

PRZM
PRZM

Hawaii, USA
Hawaii, USA

DBCP, EDB, TCP
Bromide, chlorpyrifos,

fenamiphos

Leilehua (humoxic
tropohumults)

Kawaihapai and Wahiawa
volcanic soils

Lorber and Offutt
[34]

PRZM North Carolina, USA
Wisconsin, USA

Aldicarb Sandy loam
Loamy sand and sandy loam

Mueller [35] PRZM Sweden (lysimeter) Dichlorprop, bentazon Lanna clay and Mellby sand
Mueller et al. [36] GLEAMS, PRZM Georgia, USA Alachlor, metribuzin,

norflurazon
Dothan loamy sand and

Appling sandy loam
Nicholls [37] PRZM, CALF Sweden (lysimeter) Bentazon Nantuna sand
Parrish et al. [38] PRZM, AGGR Georgia, USA Aldicarb, metolachlor,

bromide
Loamy sand to sandy loam

Pennell et al. [39] GLEAMS, PRZM,
CLMS, MOUSE,
LEACHMP

Florida, USA Aldicarb, bromide Astatula sand

Perry [40] PRZM Kansas, USA Atrazine, alachlor,
metolachlor, trifluralin,
2,4-D

Eudora silty loam, Eudora
sandy loam, and Eudora-
Kimo clay

Sadeghi et al. [41]
Sauer et al. [42]

PRZM
PRZM

Maryland, USA
Wisconsin, USA

Atrazine
Atrazine, metolachlor,

carbofuran, chlorpyrifos

Iuka and Hatboro silt loam
Plainfield sand

Shirmohammadi and
Knisel [43]

GLEAMS Sweden (lysimeter) Dichlorprop, bentazon Mellby sand

Shirmohammadi et
al. [44]

GLEAMS Maryland, USA Atrazine, carbofuran,
cyanazine, dicamba,
metolachlor, simazine

Matapeake silt loam

Sichani et al. [45] GLEAMS Indiana, USA Alachlor, atrazine,
cyanazine, carbofuran,
chlorpyrifos

Clermont silt loam

Smith et al. [46] GLEAMS, PRZM Georgia, USA Atrazine, alachlor, bromide Lakeland sand
Smith et al. [47] PRZM, LEACHMP Laboratory experiments

with intact soil cores
Atrazine Sandy loam

Trevisan et al. [48] PRZM, BAM,
LEACHM

Italy Atrazine, metolachlor Loam
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Table 1. Continued

Reference Models Locations Compounds Soil types

Walker et al. [7] GLEAMS (runoff
only), PRZM2,
LEACHP, VAR-
LEACH (leaching
only)

United Kingdom (six loca-
tions), Germany (10 loca-
tions), France (six loca-
tions), Italy (four loca-
tions)

Specific compounds not
specified but including
alachlor, chloridazon, me-
tribuzin, metsulfuron-
methyl, terbuthylazine,
runoff simulations only
with alachlor

Various soils, runoff simula-
tions with sandy loam and
clay loam

Walker et al. [49] PRZM, VARLEACH,
LEACHP

United Kingdom Alachlor, atrazine, metribu-
zin

Packed columns of sieved
surface soil (75% sand,
10% silt, 15% clay, and
1.91% organic matter)

Zacharias and
Heatwole [50]

GLEAMS, PRZM Virginia coastal plain, USA Bromide, atrazine,
metolachlor

Suffolk sandy loam

European Union has funded a research program on environ-
mental models [7], and a special section of the European-
sponsored COST 66 program is devoted to validation of en-
vironmental models.

Concern over the validation status and a general lack of
confidence in present-day models have limited their use. In
the United States, both groundwater and surface water sections
within the Environmental Fate and Effects Division of the
Office of Pesticide Programs, U.S. EPA, have indicated that
validation would improve their confidence in the use of models
and that the current models will be used only reluctantly until
this level of confidence can be increased. In addition, recent
reports from the Aquatic Risk Assessment and Mitigation Di-
alogue Group [8] and the U.S. EPA Science Advisory Panel
(SAP) that it spawned (R.B. Jaeger, 1995, Transmittal of the
Final Report of the Joint Science Advisory Board [SAB] and
the FIFRA Scientific Advisory Panel on the Aquatic Dialogue
Group Report: Pesticide Risk Assessment & Mitigation; meet-
ing held July 17, 1995, memorandum to D.M. Barolo, Office
of Pesticide Programs, U.S. Environmental Protection Agency,
Washington, DC) have pointed out the critical importance of
having confidence in the results of computer models in the
following statements: ‘‘The Office of Pesticide Programs views
all modeling, regardless of the level of sophistication, as a
screening mechanism. When the models are run conserva-
tively, they can indicate which chemicals are unlikely to pose
a hazard to nontarget organisms. However, they cannot be used
to determine if a chemical actually poses significant risks to
aquatic nontarget organisms. With what level of confidence
can these models estimate the range of risk?’’ The following
questions were also raised:

Are the proposed primary and secondary models adequate
for aquatic risk assessments?

Which models are most appropriate, and should additional
models be considered?

What is the best approach for model validation?
Therefore, the FIFRA Exposure Modeling Work Group ini-

tiated a model validation project in 1995 aimed at justifying
the use of modeling tools that are needed for risk refinement
under U.S. EPA’s new paradigm and to address the issues raised
by the SAP. This model validation project was funded and
conducted by an industry task force (the FIFRA Environmental
Model Validation Task Force) in collaboration with scientists
from regulatory agencies, other government agencies, and uni-
versities. This project was to be conducted in three phases: a
literature review, model validation studies, and final phase (if

needed) to address model or data deficiencies. The last two
phases were combined.

The scope of this validation effort had to be carefully de-
fined to make the task achievable. Both PRZM and GLEAMS
were chosen as the initial models to be tested because these
two models are currently used within the U.S. EPA and in-
dustry for regulatory exposure assessments (GLEAMS was
later dropped since this model was no longer being supported
by its developers). Exposure assessments were limited initially
to movement in the unsaturated zone for leaching assessments
and edge-of-field concentrations for runoff assessments.

The first phase of the model validation project was to review
the existing information on model validation of PRZM and
GLEAMS. The primary purpose of this literature review was
to assess the quality and quantity of existing information on
the validation of PRZM and GLEAMS to determine whether
the additional model validation studies are needed. A second
purpose of the literature review was to collect information that
would be useful in planning future model validation studies.
This report summarizes both aspects of this literature review
and presents the reasons why the FIFRA Exposure Modeling
Work Group concluded that more validation research would
be useful in improving confidence in models used in regulatory
assessments. Other papers in this series describe the results of
the leaching and runoff comparison and the statistics used in
making these comparisons.

LITERATURE AND VALIDATION OF PRZM AND GLEAMS

A literature search identified 35 articles involving the cal-
ibration/validation of model simulations with PRZM and/or
GLEAMS with measured data. These calibration/validation
studies, summarized in Table 1, use data from seven countries
on three continents as well as a number of different com-
pounds.

Because of the varied nature of the papers and the lack of
details for both model predictions and measured results, a
detailed systematic comparison of model predictions is not
possible. In order to provide qualitative information on model
performance, the results of each paper are summarized in an
appendix to this paper. The majority of the papers indicated
good agreement between model predictions and measurements
or that the models generally predicted more movement than
actually occurred. These results over the wide range of con-
ditions reported in the papers lend general support to the use
of PRZM and GLEAMS in the regulatory process, especially
for predicting leaching.
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Table 2. A summary of selected deficiencies noted by papers
summarized in Table 1

Deficiency References

PRZM
Does not consider

preferential flow
(including residues in
lower layers
underpredicted due to
preferential flow)

Barrett [19], Dowd et al. [23], Loague
et al. [15,33], Nicholls [37], Parrish
et al. [38], Perry [40], Sadeghi et
al. [41], Smith et al. [46], Smith et
al. [47], Zacharias and Heatwole
[50]

Overestimates downward
movement through
soils, especially at later
sampling intervals

Carsel et al. [2], Hegg et al. [25],
Jones et al. [27,28], Loague et al.
[15,32,33], Mueller et al. [36],
Parrish et al. [38], Pennell et al.
[39], Sauer et al. [42], Trevisan et
al. [48], Walker et al. [7]

Soil concentration
profiles not predicted
accurately

Dibbern and Pestemer [22], Jones et al.
[27], Loague et al. [32], Parrish et al.
[38], Zacharias and Heatwole [50]

Difficulties with
estimating dispersion
accurately (including
effect on peak
concentrations and the
effect of thickness of
soil horizon on
simulation results)

Barrett [19], Flori et al. [24], Jones et
al. [26], Parrish et al. [38], Walker
et al. [7]

Underpredicts persistence
in surface soils

Cai et al. [20], Jones et al. [27],
Loague et al. [15], Lorber and
Offutt [34], Pennell et al. [39]

Does not consider
upward movement due
to capillary transport

Loague et al. [15], Walker et al. [7]

Estimation routines for
evaporation are too
simple and inaccurate

Walker et al. [7], Zacharias and
Heatwole [50]

Simplicity of degradation
description (including
degradation rate
independent of soil
moisture and
temperature)

Loague et al. [15], Mueller et al. [36],
Walker et al. [7]

Soil hydraulics are too
simplistic for vadose
zone applications or for
less porous soils

Smith et al. [46]

Poor results for uncalibrat-
ed simulations of deep
leaching (about 20 m)

Loague [31]

GLEAMS
Does not consider prefer-

ential flow (including
residues in lower layers
underpredicted due to
preferential flow)

Shirmohammadi and Knisel [43], Si-
chani et al. [45], Smith et al. [46],
Zacharias and Heatwole [50]

Overestimates downward
movement through
soils, especially at later
sampling intervals

Mueller et al. [36], Pennell et al. [39],
Shirmohammadi et al. [44]

Soil concentration pro-
files not predicted ac-
curately

Dibbern and Pestemer [22], Zacharias
and Heatwole [50]

Degradation rate is inde-
pendent of soil moisture

Mueller et al. [36]

Underestimates surface
runoff

Shirmohammadi et al. [44]

Model cannot handle par-
tially frozen soil

Shirmohammadi and Knisel [43]

Runoff parameters are
hard to obtain for soils
located outside the
United States

Walker et al. [7]

Some of the deficiencies in the PRZM and GLEAMS mod-
els noted in the 35 papers are summarized in Table 2. Authors’
comments on deficiencies were included whether or not such
deficiencies were actually reflected in the comparison of pre-
dictions with measured data. The larger number of deficiencies
listed for the PRZM model is a reflection of the greater use
of PRZM in the 35 papers rather than an indication that
GLEAMS has fewer deficiencies. In fact, most of the defi-
ciencies noted in the table are common to both models. Sim-
ilarly, the lack of comments related to runoff is the result of
most of the comparisons reported in the papers being for down-
ward movement in the soil profile.

EVALUATION OF PRZM AND GLEAMS
VALIDATION STUDIES

After review of the papers listed in Table 1, the FIFRA
Exposure Modeling Work Group decided that additional com-
parisons of field data and model predictions would be useful
to supplement existing studies in helping improve confidence
in the regulatory use of environmental models for predicting
leaching and runoff. Several observations contributed to this
decision. None of the published studies used the current ver-
sion of either model (this is especially relevant to PRZM,
where the runoff routines have been changed significantly).
Very few of the studies focused on runoff losses (most studies
focused on the mobility of crop protection products in the soil
profile). The number of studies having quantitative validation
results was minimal. Since few of the published studies con-
sider model validation the primary purpose of the field ex-
periments, often data sets were not as extensive as would be
desirable for model validation. Modelers were aware of field
results in most of the studies (although in some of the studies
where the field results were known, modelers claimed to make
no adjustments to the input parameters). Therefore, in these
studies the comparisons of model predictions and experimental
measurements could be considered calibration since in model
validation the modeler should have no knowledge of the field
results to prevent biasing the selection of input parameters.

Van den Bosch and Boesten [9] independently reviewed
validation efforts with PRZM, leaching estimation and chem-
istry pesticide (LEACHP), GLEAMS, and PELMO. For both
PRZM and GLEAMS, they assessed the quality of the vali-
dation efforts in six papers (all of which are included in Table
1). They concluded that the validation status of PRZM and
GLEAMS was low, especially at concentrations near the Eu-
ropean 0.1-mg/L drinking water guideline.

ISSUES IN VALIDATION RESEARCH

The literature review also highlighted some areas requiring
careful consideration in a model validation study.

Model validation versus validation of the regulatory
modeling process

In regulatory applications, the purpose is usually to predict
the amount or concentration of a compound in runoff water
or groundwater at a site where extensive research has not been
performed. This is in direct contrast to the model developer
who usually is trying to fit predictions to existing data obtained
from a field experiment. For regulatory applications, the se-
lection of some model parameters (such as soil properties,
degradation rates, sorption parameters, or compartment sizes)
may not be as straightforward as for the model developer. In
regulatory applications, many of the parameters must be ob-
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tained from information in databases or estimated from lab-
oratory studies or studies performed at different locations.
Since the selection of model input parameters is usually one
of the most important factors affecting the accuracy of pre-
dicted results, the validation process must be designed so it is
not merely an exercise testing the ability of the modeler to
select proper input parameters [10]. However, an incorrect as-
sessment in a regulatory application is equally wrong whether
resulting from a poor selection of input parameters or from
poor model performance. If an incorrect assessment results
from the poor choice of input parameters, this is not necessarily
an indication of poor model performance. However, if an input
parameter to a specific model cannot be selected with sufficient
accuracy to ensure satisfactory model predictions, then this
model may not be suitable for use in regulatory applications.

Therefore, the validation of a regulatory application of a
model must include validation of the procedures for selecting
input parameters. This requires that these procedures be ex-
actly described to eliminate (or minimize) the influence of the
modeler. As a result, validation of a regulatory application
requires an additional step beyond the traditional validation
process when the model developer validates (or calibrates) the
model by comparing its predictions with available experimen-
tal data. In the second step, both the procedure for selecting
input parameters and the resulting model predictions are tested.
This two-step validation process of testing the model followed
by testing of the modeling procedure is necessary to avoid
misleading results since the process of selecting the input var-
iables can compensate for faults in a model.

The importance of the modeling process was shown in a
ring test of the PRZM, LEACHP, and VARLEACH models
[11] that demonstrated that differences in judgment even with
experienced modelers can significantly affect model predic-
tions. In this test, five modelers were given the same descrip-
tion of a field experiment and were then asked to model the
movement of an experimental pesticide to obtain information
on the concentration of the pesticide in the soil profile at 220
d after application and in the soil-water at a depth of 1 m. The
authors noted that no two sets of predicted results for a given
model were exactly the same. This result is not surprising given
the wide variation in the assumed values for many of the input
parameters. For example, all five modelers used five different
assumptions about the thickness of the various soil segments.
The authors pointed out that ‘‘the variation between five sim-
ulations was similar to that associated with the measurements
of pesticide behavior in the field’’ and that this user dependence
of modeling should be an important component of evaluating
model output. The authors concluded, ‘‘Even where predicted
results give an acceptably accurate simulation of field behavior,
the findings of this ring test suggest that claims of validity
will be misleading unless it can be proved that similarly ac-
curate results would be obtained by a number of independent
users’’ [11].

Acceptability of model predictions

The acceptability of model predictions compared with field
measurements is influenced by use in a regulatory setting. It
is critical that regulatory modeling procedures do not signif-
icantly underpredict the movement of residues into ground-
water or surface water, so that unexpected impacts on the
environment do not occur. Model predictions indicating greater
movement than what actually occurs are not a problem as long
as unnecessary restrictions do not result from the risk assess-

ment. The challenge is to develop a modeling process that
produces a conservative set of results while minimizing the
difference between model predictions and experimental re-
sults.

Quantitative procedures for comparing model predictions
with observed values

Most validation/calibration comparisons in the studies in
Table 1 are qualitative, using statements such as the data gen-
erally agree with the model predictions. Obtaining statistical
descriptions of these comparisons is more difficult; however,
a number of papers (e.g., Haan et al. [12], Parrish and Smith
[13], Walker et al. [7], Boekhold et al. [14], Loague et al. [15])
have been published that examine various procedures for quan-
tifying the ability of model predictions to describe observed
values. Boekhold et al. [14] discuss five approaches to as-
sessing model performance: factor f approach, comparison of
confidence intervals, comparison of mean values, comparison
of variances, and graphical methods. For their validation work
with pesticide leaching and accumulation (PESTLA), they
chose the factor f approach, which is based on the capacity
index approach described by Parrish and Smith [13]. Walker
et al. [7] present several different indices for expressing the
overall fit and descriptions of degradation and movement.
Loague et al. [15] suggest that summary variables that can be
obtained from concentration variables include total mass, cen-
ter of mass, peak concentration, time for a critical concentra-
tion to leach to a depth of interest, and depth of the leaching
front and advocate the use of root mean square error as a
statistical measure of model performance.

The choice of variables for comparison also must consider
the regulatory application. For example, if a model correctly
predicts the amount of a chemical moving to the water table
but the timing is off a couple of days, the error in timing makes
no difference in a risk assessment. Obviously, a model cor-
rectly predicting runoff as a function of time within a rainfall
event is desirable, but a model that gets only the total loss
during an event correct may be adequate in a regulatory ap-
plication. A model that correctly predicts movement to the
water table may be acceptable even if it does not correctly
predict soil concentration profiles. However, the fundamental
validity of the model processes must be maintained. For ex-
ample, correctly predicted runoff or leaching losses of crop
protection products must be considered irrelevant if water
movement is not adequately described. Armstrong et al. [16]
describe a multistep validation process that considers water
movement, tracer movement, and then movement of the spe-
cific chemical.

Separation of modeler from field data

To maximize the credibility of a validation exercise that
includes the selection of input parameters, the modeler should
have no knowledge of the field results. Otherwise, the vali-
dation work will probably be characterized as calibration.

Calibration simulations

If the predictions based on the initial set of input parameters
do not provide acceptable agreement (as defined by the ob-
jectives of validation exercise), a set of calibration simulations
may be performed to help determine whether the source of
error is the result of the model or the selection of input pa-
rameters. Such calibration should not consist of a simplistic
regression of input parameters to minimize difference between
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observed and predicted values since most water quality models
have enough adjustable parameters to fit a limited set of field
observations [12] but rather a systematic variation of input
parameters constrained to feasible ranges. Results of sensitiv-
ity analyses (such as those described by Fontaine et al. [17]
and Walker et al. [7]) can be useful tools in performing such
simulations. Calibration simulations should normally be per-
formed as a two-step process: first calibrating parameters af-
fecting movement of water to optimize the hydrology and then
changing chemical-specific properties to best describe chem-
ical movement. Haan et al. [12] describe a statistical protocol
that transforms parameter uncertainty into prediction uncer-
tainty using probability density functions in order to ‘‘distin-
guish a good fit that is based on artificial manipulation of an
overparameterized model from a good fit that is based on an
accurate description of the processes that control contaminant
transport.’’

Improving the quality of field studies used to validate
models

Additional site-specific information (e.g., more detailed soil
information, application of a tracer, or soil-specific laboratory
sorption and degradation studies) may be useful when a field
study is being used to obtain data for model validation. Smith
et al. [18] review some of the items that should be considered
when conducting field studies for model validation. This sub-
ject is important when reviewing existing data sets for inclu-
sion in validation studies as well as in the planning of new
studies to be used in model validation.

CONCLUSIONS

Comparisons of PRZM and GLEAMS predictions with field
measurements have been made in a number of studies found
in the literature. Most of these studies demonstrated that PRZM
can be a useful tool in assessing leaching. Although PRZM
predictions in surface soil in the early portions of a study are
not particularly useful, its overpredicting of residue movement
in later stages of an experiment provides conservative assess-
ments suitable for use in estimating potential leaching in reg-
ulatory risk assessments. However, because of various limi-
tations of the available literature studies, additional validation
research to supplement existing studies would improve the
confidence in the runoff and leaching predictions of PRZM
and GLEAMS in regulatory applications. This validation re-
search should carefully consider the following: (1) improving
and standardizing the process for selection of input parameters
(2) developing procedures for performing calibration simu-
lations to determine whether differences between model pre-
dictions and field measurements are the result of model in-
accuracies or the choice of input parameters (3) devising ap-
propriate procedures for keeping results of field studies from
modelers performing simulations to validate model predictions
while providing access when calibration simulations are being
performed (4) developing quantitative statistical procedures
for comparing model predictions with field measurements (5)
identifying the combinations of soil properties and weather
patterns under which the models provide estimates that are
sufficiently accurate for use in regulatory decision making (6)
identifying specific areas where each of the models can be
improved (7) identifying the type and quantity of measure-
ments that must be made in field studies to ensure suitability
for model calibration and/or validation.
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APPENDIX

Summaries of individual papers

The following paragraphs provide a summary of each of
the 35 articles listed in Table 1, including relevant conclusions
of the papers’ authors. See text for explanation of model
names.

Barrett [19] examined the leaching of triasulfuron residues
in a loamy sand in Kansas, USA, using field results and pes-
ticide root zone modeling (PRZM). The author concluded,
‘‘Modeling of triasulfuron movement with PRZM resulted in
a simulation that predicted accurately the time of appearance
of triasulfuron residues at lower depths (;60 days) and the
mass flux (nearly 10% of applied moving to shallow ground-
water within 6 months after application), but underestimated
dispersion and therefore overestimated peak concentrations in
shallow ground water by a factor of two or three.’’ The author
noted that PRZM does not simulate preferential flow in struc-
tured soils.

Cai et al. [20] examined the leaching of aldicarb residues
from a banded application in a cotton field with sandy loam
soil in Jiangsu province, China, and compared the results to
predictions made by the PRZM model (Ver 1). The model
appeared to underpredict the concentration in the soil during
the early samplings (a factor of two to three at 30 d); however,
the authors noted that ‘‘this may be due to the fact that the
field soil sampling core was collected immediately beneath the
aldicarb application point, so that the aldicarb residue con-
centration cannot represent the field-average concentration.’’
If converted to ‘‘field-average concentrations, . . . , the pre-
dicted results would be close to the measured field concentra-
tions. With increasing sample depth and time, the two results
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tend to be more consistent. This is due to aldicarb diffusing
and moving downward in the form of a pyramid beneath the
application point with lateral dispersion producing a more even
aldicarb distribution in the soil profile.’’

Carsel et al. [2] examined the use of the PRZM model (Ver
1) to predict the leaching of aldicarb residues in New York,
USA. A simulation was first performed that did not use any
site-specific data and thus was run as a calibration-free as-
sessment. The model accurately predicted the maximum con-
centration within less than 10% of the measured value but
overestimated the amount of movement through the soil. A
series of calibration runs was performed on the individual soil
core results and the average of the soil core results. In all three
cases, increasing the adsorption coefficient to twice the un-
calibrated values and making small adjustments in the deg-
radation rates resulted in predictions of peak concentrations
within less than 10% of the measured values and all other
values within a factor of two to three.

Carsel et al. [21] compared PRZM (Ver 1) predictions with
measured soil concentrations of metalaxyl from sites in Florida
and Maryland, USA. The model overpredicted the amount of
leaching early in the study at the Florida site (26 d after ap-
plication) but provided an excellent fit (predicted values were
within 30% of measured values) at 55 and 85 d after appli-
cation. At the Maryland site, both the observed and the pre-
dicted values indicated that residues remained in the top 15
cm of the soil. The predicted concentrations were within a
factor of two of the observed values, with a general over-
prediction of the concentrations.

Dibbern and Pestemer [22] examined the ability of the
GLEAMS, PRZM, CALF, LEACHM, SESOIL, and EQUI
models to describe the leaching of terbuthylazine through a
loamy soil in Germany. The GLEAMS model greatly over-
predicted the amount of leaching, as indicated by the depth of
the peak (predicted peak at 15–20 cm vs observed at 0–3 cm)
and greatly underpredicted the concentration of the residues
in the upper layers. The PRZM model slightly overpredicted
the movement (predicted peak at 3–6 cm vs observed at 0–3)
and was able to predict lower concentrations within a factor
of two to three, except for a measured value at 24 to 30 cm,
which was three times greater than the measured value at 18
to 24 cm.

Dowd et al. [23] compared the dissipation of lindane res-
idues in a forest in Georgia, USA, with predicted values from
the PRZM model (Ver 1). The PRZM model was not able to
accurately predict the measured concentrations below the top
10 cm. The authors felt that this was probably due to the
inability to model preferential flow, which is probably a very
important pathway in water movement in the highly structured
soils commonly encountered in forests.

Flori et al. [24] examined the leaching of metamitron, chlor-
idazon, ethofumesate, and lenacil residues in a field in the Po
Valley of Italy using PRZM (Ver 1). The authors noted that
the soil horizon thickness parameter (THKNS) had a major
effect on predicting the mobility and persistence of the com-
pounds.

Hegg et al. [25] studied the leaching of aldicarb residues
in a Dothan loamy sand in South Carolina, USA. The field
data and the predictions of PRZM (Ver 1) were in good agree-
ment since they indicated that detectable residues would be
found only in the top 0.6 m of soil.

Jones et al. [28] examined the leaching of aldicarb residues
at two sites in Florida using the PRZM model (Ver 1). The

PRZM underestimated the depth of the peak at an early time
point, two weeks after application (;60 vs 160 cm) but only
slightly underestimated the peak locations at six and 11 weeks
after application (;210 vs 260 cm and 225 vs 260 cm, re-
spectively). The authors indicated that these slight underpre-
dictions were due to dispersion.

Jones et al. [29] compared the predicted leaching of aldicarb
and aldoxycarb residues using the PRZM model (Ver 1) with
field data from Arizona, California, Florida, Indiana, Maine,
Michigan, Nebraska, New York, North Carolina, South Car-
olina, Virginia, Washington, and Wisconsin, USA. The max-
imum leaching depth, defined as the depth below which the
average concentration was less than the sensitivity of the an-
alytical method, was compared for 34 field plots. In most cases
where the measured leaching depth was greater than 60 cm,
the model tended to overpredict the depth of leaching, although
the overprediction was generally less than 50%, that is, ob-
served depth of 2 m versus a calculated depth of 3 m. There
were two sites, in Arizona and California, where this did not
hold; both used flood or furrow irrigation.

Jones et al. [28] investigated the leaching of aldicarb res-
idues through sandy soil in Nebraska and compared the mea-
sured values with those predicted by PRZM (Ver 1). The model
predictions were conservative in that they tended to slightly
overpredict the movement of aldicarb residues, with the pre-
dicted values being within a factor of two to three of the
measured values.

Khan and Green [29] modeled the leaching of dibromo-
chloropropane (DBCP) in two pineapple fields in Hawaii,
USA. The PRZM (Ver 1) correctly predicted the depth of the
peak concentration and the general shape of the concentration
profile with depth, although it could not predict the magnitude
of the concentration. The authors indicated that this was ex-
pected because PRZM does not take into account volatiliza-
tion, which is a major dissipation mechanism for DBCP (later
versions of PRZM do include volatilization).

Leonard et al. [30] conducted studies designed to validate
the GLEAMS model using field data from Georgia, on fena-
miphos and its sulfoxide and sulfone metabolites. Estimated
values were used for the hydrology and erosion parameters as
well as estimated degradation and adsorption values for the
three compounds. The authors concluded that ‘‘GLEAMS-sim-
ulated mass of fenamiphos, fenamiphos sulfoxide and fena-
miphos sulfone in the root zone compared favorably with field
data within the variability of the data. Simulated and observed
concentrations with depth in the soil at selected dates also
closely corresponded.’’ The predictions of the GLEAMS mod-
el slightly overestimated the total amount of fenamiphos and
its metabolites in the soil profile but were within the confidence
intervals of the measured data.

Loague [31] calibrated the PRZM model (Ver 1) for the
leaching of ethylene dibromide (EDB) in a pineapple field on
Oahu, Hawaii, using two years of data. The authors examined
several methods to compare the results of measured values
with modeling results. These include such factors as (1) total
mass, (2) center of mass, (3) peak concentration, (4) time for
a specific concentration to leach to a certain depth, (5) depth
to peak concentration, and (6) depth to the leaching front. They
concluded that if they used the data from one year to calibrate
the model, the results were poor for the other year. The authors
concluded that the poor fit was not surprising because of the
deep leaching being simulated and potential problems with the
data sets.
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Loague et al. [32] used PRZM (Ver 1) to evaluate the leach-
ing of ethylene dibromide (EDB) in two pineapple plantations
in Hawaii. This paper is the first of a series of three papers.
The results of the comparisons with the data are described in
the later two papers in the series, which have also been sum-
marized.

Loague et al. [33] examined the leaching of 1,2-dibromo-
3-chloropropane (DBCP), ethylene dibromide (EDB), and
1,2,3-trichloropropane (TCP) in structured soils in Hawaii us-
ing the PRZM model (Ver 1). The authors of the paper rec-
ognized they were attempting to use the model under condi-
tions (deep soils, volatilization) for which the model was not
designed. Despite these severe limitations, when adjustments
were made for degradation and/or volatilization, the predicted
peak concentrations of EDB in soil were within a factor of
two to four of the measured concentrations, with the model
overestimating the depth of leaching. Similar results were
found for both DBCP and TCP in the top 12 m of the soil,
but the model greatly overpredicted the concentrations from
12 to 20 m.

Loague et al. [15] used the PRZM model (Ver 1) to examine
the leaching of bromide, chlorpyrifos, and fenamiphos in two
sites in Hawaii. The PRZM was generally able to model the
movement of bromide and generally gave results that were
within a factor of two of the measured results. In one of the
test plots, the model was not able to predict the upward move-
ment of bromide by capillary rise.

Lorber and Offutt [34] examined the use of PRZM (Ver 1)
in predicting leaching of aldicarb residues in North Carolina
and Wisconsin as an assessment tool for predicting the poten-
tial for groundwater contamination. A comparison of observed
versus predicted values for aldicarb residues at three sites with
nine distinct scenarios was excellent, with observed versus
predicted values generally within a factor of two and always
within a factor of five.

Mueller [35] modeled the leaching of dichlorprop and ben-
tazon through lysimeters in Sweden using PRZM (Ver 1) and
compared the results to field data. Bentazon movement was
examined in sand and clay, while dichlorprop movement was
studied in clay, sand, and loam soils. Two significant modi-
fications were made to two sets of hydrologic parameters. The
initial soil-water content was adjusted to match the predicted
time of first water discharge to the actual data. Also, the dif-
ference between field capacity and wilting point was adjusted
in each soil horizon. When these two modifications were made,
an excellent agreement was observed between the measured
and calculated volume of water leaching from all five soils
during one year. The loss of bentazon from the soil columns
was accurately predicted over the year of the study, with less
than a 10% difference between the observed and predicted
values after one year. For dichlorprop, PRZM predicted no
dichlorprop in the leachate, while dichlorprop was actually
present in the leachate. This difference between predicted and
observed was probably the result of significantly slower deg-
radation occurring in the lysimeter than in the laboratory stud-
ies.

Mueller et al. [36] examined the ability of the PRZM (Ver
1) and GLEAMS (Ver 1.8.55) models to predict the leaching
of alachlor, metribuzin, and norflurazon in a loamy sand soil
in Georgia. Both models accurately predicted the observed
concentrations of norflurazon in the soil profile with the pre-
dicted values equivalent to the observed values at 84 d. For
alachlor and metribuzin, both models accurately predicted the

observed concentrations in the soil profile within the first 20
d, then overpredicted the movement through the soil profile.
For metribuzin, the observed concentrations were within a
factor of three for the first 20 d and within a factor of four by
day 40, the last day at which measured values were above the
limit of detection. For alachlor, the observed concentrations
were within a factor of four for the first 20 d and within a
factor of seven by day 40, the last day at which measured
values were above the limit of detection.

Nicholls [37] studied the movement of bentazon through
lysimeters containing a sand using the PRZM and CALF mod-
els. The PRZM (Ver 1) was able to accurately predict the total
amount of leachate produced over 325 d and the total amount
of bentazon leached. Unfortunately, the model overpredicted
the amount of leachate produced early in the experiment, but
this was due to the modelers not simulating the presence of a
crop in the lysimeter, which would have increased the amount
of evapotranspiration, and not simulating the two months of
freezing conditions, which allowed for the model to predict
leaching even though this did not occur under the experimental
conditions. Bentazon appeared in the leachate earlier than pre-
dicted by the models.

Parrish et al. [38] used the PRZM (Ver 2) and AGGR mod-
els to examine the leaching of aldicarb, metolachlor, and bro-
mide in a four-year field study in the Dougherty Plain area of
southwestern Georgia. For metolachlor, which was studied for
three years, the predicted values using PRZM were within a
factor of two of the measured value for over 90% of the mea-
sured values and within a factor of five for all of the measured
values (up to 10 per year). The few times when the predicted
value was greater than twice the measured value occurred when
the observed values were very small. For aldicarb, which was
studied for four years, more variability was observed in the
comparisons. The predicted values using PRZM were within
a factor of two of the measured value for 60 to 100% of the
measured values and within a factor of five for 82 to 100%
of the measured values (up to 15 per year). The model tended
to overpredict the movement of aldicarb through the soil pro-
file, which lowered the goodness of fit, especially when very
low measured residues were detected. Modeling the movement
of bromide was more difficult. The authors concluded, ‘‘The
lack of mass balance in bromide suggests that preferential flow
is a significant factor that may adversely affect the viability
of advection-dispersion models for these soils. Nonetheless,
both PRZM and AGGR accurately predicted bromide peak
concentrations down to 1 meter, but diverged considerably
thereafter by predicting deeper movement than actually oc-
curred.’’

Pennell et al. [39] examined the leaching of aldicarb and
bromide through a sand in Florida using GLEAMS (Ver 1.8.54)
and PRZM (Ver 1). The predicted PRZM values were within
approximately 30, 45, and 70% of the measured values for
bromide, aldicarb, and total aldicarb related residues, respec-
tively. GLEAMS underestimated the dissipation of bromide
and total aldicarb-related residues in the root zone and over-
predicted the solute concentrations near the soil surface.

Perry [40] examined the leaching of atrazine, alachlor, me-
tolachlor, trifluralin, and 2,4-D residues in Kansas and com-
pared them to results predicted by the PRZM model (Ver 1).
The authors indicated that ‘‘the PRZM was best calibrated to
the observed data for the three soil types by treating the sand-
and-silt fraction as sand and adjusting the organic-carbon con-
tent by a factor of 0.1.’’
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Sadeghi et al. [41] compared the effects of conventional
versus no-till management systems on the leaching of atrazine
during three growing seasons in silt loam soils in Maryland
using field results and the PRZM model (Ver 1). The modeling
results overpredicted, by less than a factor of two, the levels
in the top 10 cm of the soil. The modeling was not able to
predict the low concentrations, generally less than 25 ppb,
detected in 10-cm increments from 20 to 50 cm.

Sauer et al. [42] examined the leaching of atrazine and
metolachlor in a field study in Wisconsin and the movement
of carbofuran and chlorpyrifos in intact soil columns. The
results of the experiments were compared to results from the
PRZM model (Ver 1). Starting after the 14-d sampling point,
PRZM predicted deeper movement of atrazine residues than
were observed. Similar results were found for metolachlor. One
of the problems of this study was the lack of mobility of the
compounds in the field, which was due to the low rainfall
during the study. Shirmohammadi and Knisel [43] examined
the leaching of dichloprop and bentazon through lysimeters in
Sweden using the GLEAMS model (Ver 2.0). It was necessary
to make several major modifications to parameters dealing with
hydrology since lysimeters were being modeled rather than a
field scale experiment, which is what GLEAMS was designed
to simulate. The experimental values showed considerable var-
iability, with three of the four lysimeters not producing any
leachate during any given sampling period.

Shirmohammadi et al. [44] used the GLEAMS model to
examine the leaching of atrazine, carbofuran, cyanazine, di-
camba, metolachlor, and simazine in no-till and conventional
tillage systems in Maryland. Predicted leaching of the pesti-
cides was compared to the results of groundwater concentra-
tions of the pesticides. With only one exception, the model
predicted higher concentrations than were observed, with the
predicted values ranging from two to 10 times the observed
values.

Sichani et al. [45] compared the leaching and runoff of
alachlor, atrazine, cyanazine, carbofuran, and chlorpyrifos
through a tiled drainage field in Indiana with predicted values
using the GLEAMS model. The model was able to predict
fairly well the total mass of the compounds that moved through
the soil profile as well as the overall timing of the movement,
except for the first observed values in the drainage after the
application. For atrazine, the predicted values were less than
the observed values, with the peak differences being within a
factor of two to four. For carbofuran, the predicted values were
greater than the observed values, with the peak differences
being within a factor of two. For cyanazine, the predicted
values were within a factor of two to four of the observed
values.

Smith et al. [46] compared the leaching of atrazine, alachlor,
and bromide on a Lakeland sand in Georgia using GLEAMS
(Ver 1.8.55) and PRZM (Ver 2). The authors concluded, ‘‘In
all cases, the measured and predicted peak concentrations
agreed to within an order of magnitude, and in most cases
they agreed to within a factor of 2 or 3.’’

Smith et al. [47] compared the leaching of atrazine through
intact soil cores in the laboratory with predictions made using
the PRZM model (Ver 1). It was necessary to calibrate the
model in order to obtain the proper hydrologic balance. The

ability of the model to predict the concentration of atrazine in
the leachate from four columns varied widely, as did the ob-
served values (measured value of 10.7, 0.1, 0.5, and 1.4 g/L
vs predicted values of 0.0, 0.1, 0.3, and 0.1 g/L, respectively).
The PRZM underpredicted atrazine concentrations in the upper
and lower layers of the soil but overpredicted the concentra-
tions at the middle layers. In three of the four columns studied,
the authors noted evidence of preferential flow.

Trevisan et al. [48] used the PRZM model (Ver 1) to ex-
amine the leaching of atrazine and metolachlor in a field study
in Italy. The model was generally able to predict the experi-
mental data, especially in the top 10 cm. The authors indicated
that PRZM underestimated residue levels at 30 cm early in
the study, but then agreement was good later in the study. No
quantitative indication was seen of the actual values, so that
a better comparison could not be made.

Walker et al. [7] examined the ability of several models
(GLEAMS, runoff only; PRZM, Ver 2; LEACHP; and VAR-
LEACH, leaching only) to predict the movement of pesticide
residues using data from several countries (United Kingdom,
six locations; Germany, 10 locations; France, six locations;
Italy, four locations). A wide variety of compounds, including
alachlor, chloridazon, metribuzin, metsulfuron-methyl, and ter-
buthylazine, were used. The PRZM2 tended to overpredict,
especially at later sampling times, the movement of residues,
especially in lysimeter studies. Based on 63 comparisons of
the German and French data, PRZM overestimated the mean
leaching depth in 25% of the observations, was within 20%
of the measured value in 20% of the observations, and un-
derestimated leaching by more than 20% in 55% of the ob-
servations. The PRZM overestimated the residual mass in 25%
of the observations, was within 20% of the measured value in
55% of the observations, and underestimated leaching by more
than 20% in 25% of the observations. A wide difference was
observed in the ability to predict the values from the French
versus the German data sets as measured by model efficiency,
with the French data giving 49% acceptable values, while the
German data only gave 28% acceptable values. GLEAMS val-
idation efforts were limited to runoff data from one site for
three seasons.

Walker et al. [49] compared the results of lysimeter studies
with alachlor, atrazine, and metribuzin to predicted values from
PRZM (Ver 2), VARLEACH, and LEACHP. For all three com-
pounds, PRZM2 overpredicted the movement at later points
(112 and 156 d) in the study. Although PRZM underpredicted
the concentrations of the compounds in the leachate at early
sampling events, because of its inability to predict preferential
flow, the cumulative losses predicted were within 20% of the
measured losses over the length of the study for metribuzin,
with no data given for the other compounds.

Zacharias and Heatwole [53] examined the leaching of bro-
mide, atrazine, and metolachlor over a five-month period in a
field plot that had been planted to no-till corn in the coastal
plain of Virginia using GLEAMS (Ver 1.8.55) and PRZM (Ver
2). The modeling used uncalibrated and calibrated simulations.
Both the GLEAMS and PRZM models were unable to accu-
rately predict the initial movements of the bromide tracer. The
authors felt that this was due to both models’ inability to model
preferential flow.


